Adverse Selection, Slow Moving Capital and Misallocation.

William Fuchs Brett Green Dimitris Papanikolaou

Berkeley Haas - Kellogg

Fall 2013
Motivation

- Economies respond sluggishly to aggregate shocks
- Capital misallocation matters.
 - e.g., Syverson (2004); Foster, Haltiwanger, and Syverson (2008)
- Especially in developing countries.
 - e.g., Hsieh and Klenow (2009)
Adjustment costs often used to explain these patterns:

- ‘k-dot’ adjustment cost generate slow changes in the capital stock
- ‘i-dot’ adjustment costs to generate slow changes in investment
 - Christiano, Eichenbaum and Evans (2005)
- Counter-cyclical adjustment costs generate pro-cyclical reallocation
 - Eisfeldt and Rampini (2006)

But what do these costs represent? Physical costs vs market frictions
A microfoundation for capital adjustment costs based on adverse selection
This Paper

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics

Applications
- Physical (or Human) Capital Reallocation.
- Technological Innovation and New Investment.
- Slow moving financial capital.
This Paper

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics
 - Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate
This Paper

- A microfoundation for capital adjustment costs based on adverse selection
 - Flexible model: generates rich reallocation dynamics
 - Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate

- Applications
A microfoundation for capital adjustment costs based on adverse selection

- Flexible model: generates rich reallocation dynamics
- Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate

Applications

- Physical (or Human) Capital Reallocation.
A microfoundation for capital adjustment costs based on adverse selection

- Flexible model: generates rich reallocation dynamics
- Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate

Applications

- **Physical (or Human) Capital Reallocation.**
- Technological Innovation and New Investment.
A microfoundation for capital adjustment costs based on adverse selection

- Flexible model: generates rich reallocation dynamics
- Misallocation increases with
 - productivity dispersion (degree of adverse selection)
 - frequency of productivity shifts
 - lower interest rate

Applications

- Physical (or Human) Capital Reallocation.
- Technological Innovation and New Investment.
- Slow moving financial capital.
Convex Adjustment Cost and Time to Build Models

Search and Capital Mobility:

Financial Constraints:

Adverse Selection and Delay:
The Model

- Different locations \(l \in \{a, b\} \)
 - Sectors, industries, or physical locations
- Mass \(M > 1 \) of firms in each location
 - Firms can operate a unit of capital only in their own location
- Unit mass of capital of quality: \(\theta \in [\underline{\theta}, \overline{\theta}] \sim F(\theta) \) with \(dF(\theta) > 0 \)
 - Quality is privately observed by owner of capital
- The state \(\phi_t \in \{\phi_A, \phi_B\} \) is a Markov process with transition probability \(\lambda \).
- Output flow \(\pi_l(\theta, \phi_t) \) depends on capital quality, its location and the state:

\[
\begin{array}{c|cc}
\text{Location} & \pi_A & \pi_B \\
\hline
\text{State} & \phi_A & \pi_1(\theta) & \pi_0(\theta) \\
\phi_B & \pi_0(\theta) & \pi_1(\theta) \\
\end{array}
\]

where \(\pi_1(\theta) > \pi_0(\theta) \) and \(\pi'_i(\theta) > 0 \).
In order for capital to be reallocated it must be traded in a continuously open market.

Only friction adverse selection. (not adj costs, no search, deep pockets)

Firms can observe in which sector the capital is that they are buying but not its quality.

Existing capital depreciates and new capital flows in at rate δ

- New capital flows into efficient sector (maintains full support).

Firms maximize the present expected profits discounted at $\rho = r + \delta$
If we have just one permanent transition then the value to the buyers of capital of type θ is simply $V_1(\theta) = \frac{\pi_1(\theta)}{\rho}$.

If the state is transitory then buyers will take into account the inefciencies they will face at the time of future sales when valuing capital. The problem is harder since $V_1(\theta)$ will be endogenous.

Different types of capital will have different illiquidity discounts.
Transitory vs Permanent

- If we have just one permanent transition then the value to the buyers of capital of type θ is simply $V_1 (\theta) = \frac{\pi_1(\theta)}{\rho}$.
- If the state is transitory then buyers will take into account the inefficiencies they will face at the time of future sales when valuing capital.
If we have just one permanent transition then the value to the buyers of capital of type θ is simply $V_1(\theta) = \frac{\pi_1(\theta)}{\rho}$.

If the state is transitory then buyers will take into account the inefficiencies they will face at the time of future sales when valuing capital.

- The problem is harder since $V_1(\theta)$ will be endogenous.
If we have just one permanent transition then the value to the buyers of capital of type θ is simply $V_1(\theta) = \frac{\pi_1(\theta)}{\rho}$.

If the state is transitory then buyers will take into account the inefficiencies they will face at the time of future sales when valuing capital.

- The problem is harder since $V_1(\theta)$ will be endogenous.
- Different types of capital will have different illiquidity discounts.
Given P_t sellers face a stopping problem:

$$
\sup_{\tau} \int_{0}^{\tau} e^{-\rho t} \pi_0 (\theta) \, dt + e^{-\rho \tau} P_t
$$
Permanent: Seller’s Problem

- Given P_t sellers face a stopping problem:

$$\sup_{\tau} \int_{0}^{\tau} e^{-\rho t} \pi_0(\theta) \, dt + e^{-\rho \tau} P_t$$

- Skimming Property: If it is optimal for type θ to trade at time t, then strictly optimal for all $\theta' < \theta$ to trade at (or before) t.

Let χ_t denote the lowest quality asset that has not been traded by time t:

$$\chi_t = \inf_{\theta} \tau_i = t : \tau_i \geq F$$
Given P_t sellers face a stopping problem:

$$
\sup_{\tau} \int_{0}^{\tau} e^{-\rho t} \pi_0 (\theta) \, dt + e^{-\rho \tau} P_t
$$

Skimming Property: If it is optimal for type θ to trade at time t, then strictly optimal for all $\theta' < \theta$ to trade at (or before) t.

Let χ_t denote the lowest quality asset that has not been traded by time t:

$$
\chi_t = \inf \{ \theta_i : \tau_i \geq t \}
$$
Definition

A path for prices P and stopping rules $\tau(\theta)$ is a **Competitive Decentralized Equilibrium** if:

(i) **Sellers Optimize:** Given P, $\tau(\theta)$ solves the Seller’s Problem

(ii) **Zero Profit:** Let $\Theta_t \neq \emptyset$ denote the set of types that trades at t, then:

$$P_t = E \left[V_1(\theta) \mid \theta \in \Theta_t \right]$$

(iii) **Market Clearing:** $P_t \geq V_1(\chi_t)$
We will focus our analysis on the separating equilibrium where χ_t is strictly increasing and continuous.

Other equilibria can be ruled out with additional assumptions.
Zero Profit requires that:

\[P_t = V_1 (\chi_t) = \frac{\pi_1 (\chi_t)}{\rho} \]
Permanent: Characterization:

- Zero Profit requires that:

\[P_t = V_1(\chi_t) = \frac{\pi_1(\chi_t)}{\rho} \]

- Seller’s Optimality:

\[\rho P_t = \frac{dP_t}{dt} + \pi_0(\chi_t) \]

\[\text{cost} \]

\[\text{benefit} \]
Permanent: Characterization:

- Zero Profit requires that:

\[P_t = V_1(\chi_t) = \frac{\pi_1(\chi_t)}{\rho} \]

- Seller's Optimality:

\[\rho P_t = \frac{dP_t}{dt} + \pi_0(\chi_t) \]

\[\underbrace{\text{cost}}_{\rho P_t} = \underbrace{\frac{dP_t}{dt}}_{\text{benefit}} + \pi_0(\chi_t) \]

- Together:

\[\rho V_1(\chi_t) = \frac{d\chi_t}{dt} \frac{dV_1(\chi_t)}{d\chi} + \pi_0(\chi_t) \]
Letting $\dot{\chi}_t = \frac{d\chi_t}{dt}$ and rearranging:

$$\dot{\chi}_t = \frac{\pi_1(\chi_t) - \pi_0(\chi_t)}{\frac{\pi_1'(\chi_t)}{\rho}}$$
Permanent: Characterization:

- Letting $\dot{\chi}_t = \frac{d\chi_t}{dt}$ and rearranging:

$$\dot{\chi}_t = \frac{\pi_1 (\chi_t) - \pi_0 (\chi_t)}{\rho}$$

- The lowest type trades immediately:

$$\chi_0 = \theta$$
Letting $\dot{\chi}_t = \frac{d\chi_t}{dt}$ and rearranging:

$$\dot{\chi}_t = \frac{\pi_1 (\chi_t) - \pi_0 (\chi_t)}{\pi'_1(\chi_t)}$$

The lowest type trades immediately:

$$\chi_0 = \theta$$

This differential equation + boundary condition pin down the equilibrium. Note that $F(\theta)$ only plays a role via its support, shape does not matter.
Letting $\dot{\chi}_t = \frac{d\chi_t}{dt}$ and rearranging:

$$\dot{\chi}_t = \frac{\pi_1 (\chi_t) - \pi_0 (\chi_t)}{\frac{\pi'_1(\chi_t)}{\rho}}$$

The lowest type trades immediately:

$$\chi_0 = \theta$$

This differential equation + boundary condition pin down the equilibrium. Note that $F(\theta)$ only plays a role via its support, shape does not matter.

$F(\theta)$ would still matter when calculating aggregates.
Figure: Response to a sectoral productivity shift, where at $t = 0$, sector B becomes the more productive sector. The economy recovers slowly from a productivity shift even though aggregate potential output is unchanged.
Permanent: Aggregate Productivity

(a) productivity in sector A (b) productivity in sector B (c) total productivity

Figure: Productivity is increasing across both sectors.
Permanent: Example:

Let \(\pi_1 (\theta) = c\theta + d \) and \(\pi_0 (\theta) = \theta \)

\[
\dot{\chi}_t = \frac{(c - 1)\chi_t + d}{\frac{c}{\rho}}
\]

\(c = 1 \rightarrow \dot{\chi}_t \) is constant over time
\(c > 1 \rightarrow \dot{\chi}_t \) is increasing over time
\(c < 1 \rightarrow \dot{\chi}_t \) is decreasing over time
Under full information we would have type specific prices $P(\theta)$ and all capital instantaneously reallocating.
Permanent: Example Benchmarks:

- Under full information we would have type specific prices $P(\theta)$ and all capital instantaneously reallocating.
- Convex adjustment cost model:
Permanent: Example Benchmarks:

- Under full information we would have type specific prices $P(\theta)$ and all capital instantaneously realloca­ting.

- Convex adjustment cost model:
 - For simplicity assume capital is homogenous.
Under full information we would have type specific prices \(P(\theta) \) and all capital instantaneously reallocating.

Convex adjustment cost model:
- For simplicity assume capital is homogenous.
- Specify costs in terms of how capital is reallocated between sectors:

\[
c(k, \dot{k}, \ddot{k}) = \begin{cases}
 c(k)^2 & ('kdot') \\
 c\left(\frac{k}{1-k}\right)^2 (1-k) & ('ik') \\
 c(\ddot{k})^2 & ('idot')
\end{cases}
\]

Focus on the planner’s problem:

\[
\max \int_0^\infty e^{-\rho t} (1 - k_t) \pi_0 + k_t \pi_1 - c(k_t)
\]
Permanent: Costly Adjustment Cost Dynamics:

Adverse selection can deliver similar dynamics to those of the costly adjustment cost models!!
Focus on stationary separating equilibria (only time since last shock matters).

Let $V_0(\theta, \chi)$ denote the value of a unit of capital ineffectively allocated.

The seller's Bellman equation is:

$$
\rho V_0(\theta, \chi) = \pi_0(\theta) + \lambda (V_1(\theta) - V_0(\theta, \chi)) + \frac{\partial V_0(\theta, \chi)}{\partial \chi} \dot{\chi}_t
$$

The cut-off type ($\theta = \chi$) must be locally indifferent:

$$
P_0(\chi) = \frac{\partial V_0(\theta, \chi)}{\partial \chi} \bigg|_{\theta = \chi}
$$

Combining we get:

$$
\dot{\chi}_t = \rho V_1(\chi_t) - \pi_0(\chi_t) V_1(\chi_t), \chi_0 = \theta
$$

Before we were done but now we must determine $V_1(\theta)$ which is now endogenous.
Transitory: Seller’s Problem

- Focus on stationary separating equilibria (only time since last shock matters).
- Let \(V_0(\theta, \chi) \) denote the value of a unit of capital inefficiently allocated.
Transitory: Seller’s Problem

- Focus on stationary separating equilibria (only time since last shock matters).
- Let $V_0(\theta, \chi)$ denote the value of a unit of capital inefficiently allocated.
- The seller’s Bellman equation is:

$$\rho V_0(\theta, \chi) = \pi_0(\theta) + \lambda (V_1(\theta) - V_0(\theta, \chi)) + \frac{\partial V_0(\theta, \chi)}{\partial \chi} \dot{\chi}_t$$

- The cut-off type $(\theta = \chi)$ must be locally indifferent:

$$P_0(\chi) = \frac{\partial V_0(\theta, \chi)}{\partial \chi}$$

Combining we get:

$$\dot{\chi}_t = \rho V_1(\chi_t) - \pi_0(\chi_t) V_0(\chi_t)$$

Before we were done but now we must determine $V_1(\theta)$ which is now endogenous.
Transitory: Seller’s Problem

- Focus on stationary separating equilibria (only time since last shock matters).
- Let $V_0(\theta, \chi)$ denote the value of a unit of capital inefficiently allocated.
- The seller’s Bellman equation is:

\[
\rho V_0(\theta, \chi) = \pi_0(\theta) + \lambda (V_1(\theta) - V_0(\theta, \chi)) + \frac{\partial V_0(\theta, \chi)}{\partial \chi} \dot{\chi}_t
\]

- The cutoff type ($\theta = \chi$) must be locally indifferent:

\[
P' (\chi) = \frac{\partial V_0(\theta, \chi)}{\partial \chi} \bigg|_{\theta=\chi}
\]
Focus on stationary separating equilibria (only time since last shock matters).

Let $V_0(\theta, \chi)$ denote the value of a unit of capital inefficiently allocated.

The seller’s Bellman equation is:

$$
\rho V_0(\theta, \chi) = \pi_0(\theta) + \lambda(V_1(\theta) - V_0(\theta, \chi)) + \frac{\partial V_0(\theta, \chi)}{\partial \chi} \dot{\chi}_t
$$

The cutoff type ($\theta = \chi$) must be locally indifferent:

$$
P'(\chi) = \frac{\partial V_0(\theta, \chi)}{\partial \chi} |_{\theta=\chi}
$$

Combining we get:

$$
\dot{\chi}_t = \frac{\rho V_1(\chi_t) - \pi_0(\chi_t)}{V_1'(\chi_t)}, \quad \chi_0 = \theta
$$
Transitory: Seller’s Problem

- Focus on stationary separating equilibria (only time since last shock matters).
- Let $V_0(\theta, \chi)$ denote the value of a unit of capital inefficiently allocated.
- The seller’s Bellman equation is:

$$\rho V_0(\theta, \chi) = \pi_0(\theta) + \lambda (V_1(\theta) - V_0(\theta, \chi)) + \frac{\partial V_0(\theta, \chi)}{\partial \chi} \dot{\chi}_t$$

- The cutoff type ($\theta = \chi$) must be locally indifferent:

$$P'(\chi) = \frac{\partial V_0(\theta, \chi)}{\partial \chi} \bigg|_{\theta=\chi}$$

- Combining we get:

$$\dot{\chi}_t = \frac{\rho V_1(\chi_t) - \pi_0(\chi_t)}{V_1'(\chi_t)}, \quad \chi_0 = \theta$$

- Before we were done but now we must determine $V_1(\theta)$ which is now endogenous.
Transitory: Seller’s Problem

Determining $V_1(\theta)$ from χ_t

$$V_1(\theta) = \frac{\rho}{\rho + \lambda} \pi_1(\theta) + \frac{\lambda}{\rho + \lambda} V_0(\theta, \theta)$$

Also,

$$V_0(\theta, \theta) = f(\tau(\theta)) \frac{\pi_0(\theta)}{\rho} + (1 - f(\tau(\theta))) V_1(\theta)$$

$\tau(\theta)$ is the time from that it takes to type θ to trade once the state switches.

$f(\tau(\theta))$ in addition takes into account discounting and the state switching.
Transitory: Characterization:

Combining both we get:

\[V_1(\theta) = g(\tau(\theta)) \frac{\pi_0(\theta)}{\rho} + (1 - g(\tau(\theta))) \frac{\pi_1(\theta)}{\rho} \]
Transitory: Characterization:

- Combining both we get:

\[V_1(\theta) = g(\tau(\theta)) \frac{\pi_0(\theta)}{\rho} + (1 - g(\tau(\theta))) \frac{\pi_1(\theta)}{\rho} \]

- Using the seller’s indifference condition we can then obtain:

\[\dot{\chi}_t = \rho \left(1 - g(t) + \frac{g'(t)}{\rho} \right) \left(\pi_1(\chi_t) - \pi_0(\chi_t) \right) \]

\[\frac{\rho \left(1 - g(t) + \frac{g'(t)}{\rho} \right) \left(\pi_1(\chi_t) - \pi_0(\chi_t) \right)}{g(t) \pi_0'(\chi_t) + (1 - g(t)) \pi_1'(\chi_t)} \]

which (under mild regularity conditions) has a unique solution.
Existence and Uniqueness of Separating Equilibria

Theorem

There exists a unique \((\tau^*, V_1^*)\) such that the strategies consistent with \((\tau^*, V_1^*)\) constitute a fully separating equilibrium.

Remark: If other equilibria exist they are basically characterized by a continuous flow of trade, a pause and one atom in which all remaining types trade. If the adverse selection problem is mild enough then the atom would take place at time zero. A sufficient condition to rule such equilibria out is that \(\pi_0(\bar{\theta}) = \pi_1(\bar{\theta})\).
What happens when shocks are more frequent?

- Initial guess: The state will switch back soon \Rightarrow less incentive to trade \Rightarrow slower reallocation.
What happens when shocks are more frequent?

- Initial guess: The state will switch back soon \Rightarrow less incentive to trade \Rightarrow slower reallocation.
- Not correct!!

![Graphs showing constant and increasing gains over time](image-url)
What happens when shocks are more frequent?

Result

Consider any two symmetric economies \(\Gamma_x \) and \(\Gamma_y \), which are identical except that \(\lambda_x < \lambda_y \). There exists a \(\bar{t} > 0 \) such that the rate of reallocation is strictly higher in \(\Gamma_y \) than in \(\Gamma_x \) prior to \(\bar{t} \), i.e., \(\chi'_y(t) > \chi'_x(t) \) for all \(t \in [0, \bar{t}] \).
What happens when shocks are more frequent?

Explanation:

- Fix the equilibrium $\dot{\chi}_t$ in economy Γ_x and increase λ
What happens when shocks are more frequent?

Explanation:

- Fix the equilibrium $\dot{\chi}_t$ in economy Γ_x and increase λ
 - delay incurred more frequently,
What happens when shocks are more frequent?

Explanation:

- Fix the equilibrium $\dot{\chi}_t$ in economy Γ_x and increase λ
 - delay incurred more frequently,
 - marginal cost of delay increases,
What happens when shocks are more frequent?

Explanation:

- Fix the equilibrium $\dot{\chi}_t$ in economy Γ_x and increase λ
 - delay incurred more frequently,
 - marginal cost of delay increases,
 - more incentive to mimic θ
What happens when shocks are more frequent?

Explanation:

- Fix the equilibrium $\dot{\chi}_t$ in economy Γ_x and increase λ
 - delay incurred more frequently,
 - marginal cost of delay increases,
 - more incentive to mimic θ

- Types close to θ would prefer to accept sooner when λ increases.
What happens when shocks are more frequent?

Explanation:

- Fix the equilibrium $\dot{\chi}_t$ in economy Γ_x and increase λ
 - delay incurred more frequently,
 - marginal cost of delay increases,
 - more incentive to mimic θ

- Types close to θ would prefer to accept sooner when λ increases.

- Reallocation must "speed up" at the bottom in equilibrium.
What happens when shocks are more frequent?

\[\frac{\pi_1}{\rho} \]

- \(\lambda = 0.1 \)
- \(\lambda = 2 \)
Empirical Evidence: Productivity dispersion correlated with misallocation.
Empirical Evidence: Productivity dispersion correlated with misallocation.

The model provides a causal link.
Empirical Evidence: Productivity dispersion correlated with misallocation.

The model provides a causal link.

Dispersion can be measure by $\bar{\theta} - \theta$
Productivity Dispersion and Misallocation

- The model provides a causal link.
- Dispersion can be measure by $\bar{\theta} - \theta$

- Misallocation of quality θ capital:

$$m(\theta) = 1 - \frac{\rho V(\theta) - \pi_0(\theta)}{\pi_1(\theta) - \pi_0(\theta)}$$
Productivity Dispersion and Misallocation

- The model provides a causal link.
- Dispersion can be measured by $\bar{\theta} - \theta$

- Misallocation of quality θ
capital:

$$m(\theta) = 1 - \frac{\rho V(\theta) - \pi_0(\theta)}{\pi_1(\theta) - \pi_0(\theta)}$$

- Aggregate misallocation:

$$\bar{m} = \int_{\theta}^{\bar{\theta}} m(\theta) \, dF(\theta)$$
Productivity Dispersion and Misallocation

- The model provides a causal link.
- Dispersion can be measure by $\bar{\theta} - \theta$

Misallocation of quality θ capital:

$$m(\theta) = 1 - \frac{\rho V(\theta) - \pi_0(\theta)}{\pi_1(\theta) - \pi_0(\theta)}$$

Aggregate misallocation:

$$\bar{m} = \int_{\theta}^{\bar{\theta}} m(\theta) \, dF(\theta)$$
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.

Delayed response to shocks. Productivity dispersion amplifies misallocation. TFP slowdowns in response to innovation.

Several possible applications:

- Physical capital reallocation.
- Human capital reallocation.
- Innovation and new investment.
- Slow moving financial capital.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.

Several possible applications:
- Physical capital reallocation.
- Human capital reallocation.
- Innovation and new investment.
- Slow moving financial capital.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation.

Several possible applications:
- Physical capital reallocation.
- Human capital reallocation.
- Innovation and new investment.
- Slow moving financial capital.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation
- Several possible applications:
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation
- Several possible applications:
 - Physical capital reallocation.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation

- Several possible applications:
 - Physical capital reallocation.
 - Human capital reallocation.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation

- Several possible applications:
 - Physical capital reallocation.
 - Human capital reallocation.
 - Innovation and new investment.
Conclusion

- Presented an adverse selection based mechanism for generating slow moments of capital.
- A microfoundation for convex adjustment cost models.
- Capable of generating rich dynamics/predictions.
 - Delayed response to shocks.
 - Productivity dispersion amplifies misallocation.
 - TFP slowdowns in response to innovation
- Several possible applications:
 - Physical capital reallocation.
 - Human capital reallocation.
 - Innovation and new investment.
 - Slow moving financial capital.