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ABSTRACT

We develop a tractable framework of delegated asset management with flexible information

acquisition in a multi-asset economy in which fund managers face moral hazard in portfolio

allocation decisions. We explore the features of the optimal affine compensation contract

for fund managers, in which benchmarking arises endogenously as part of their optimal

compensation. In the equilibrium with delegated learning, asset prices reflect both the ac-

quired private information of fund managers and their desire to hedge their exposure to

the benchmark. We show a potential gap between our model-implied measure and several

widely-adopted empirical statistics intended to capture managerial ability. In a multi-period

extension, we propose a new performance measure of fund manager skill. Our delegated

learning channel can also help rationalize the excess comovement documented in asset re-

turns.
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1 Introduction

There is growing concern that active fund managers lack the superior ability in garnering

higher returns to justify their higher fees compared to their passive counterparts. Consistent

with this view, in recent years there has been an accelerating shift in fund flows from active

to passive strategies.1 The existing literature has focused on either improving empirical

measures to evaluate the unobservable skill of fund managers, or on developing theories to

justify the lack of empirical support for their superior ability.2 Despite the progress of this

fast growing literature, the relationship between fund manager ability and the incentives

that they face, in equilibrium, is still not well-understood. In this paper, we ask to what

extent such unobservable ability is an outcome of the incentives provided to active managers

to acquire information through their compensation contracts.

To investigate this issue, we cast the information acquisition and portfolio allocation de-

cisions of a delegated asset manager as a principal-agent problem between the fund manager

and its investors. We refer to this as the delegated learning channel. We study an economy

in which asset managers can trade on behalf of investors in a multi-asset financial market,

similar to that in Admati (1985). In the spirit of Kacperczyk et al. (2016), fund managers

are able to exert costly effort to learn about the aggregate and asset-specific components of

the payoffs of the assets in which they can invest. The inability of investors to observe the

effort and portfolio decisions of their delegated asset managers, however, forces investors to

offer a contract that is incentive compatible to managers, who seek only to maximize their

compensation. In equilibrium, these incentives feed into asset prices as fund managers trade

1Since 2005, actively managed equity and fixed income funds have lost fund flows to passive strategies
globally. According to MorningStar, over last decade, actively run U.S. stock funds saw net outflows every
year, totaling about $600 billion, while their indexed counterparts saw net inflows of approximately $700
billion. See http://www.marquetteassociates.com/research/a-continued-shift-from-active-to-passive-in-u-s-
equities.

2The existing literature has developed several theories to help explain the lack of empirical support that
active managers have superior ability, including that fund performance exhibits decreasing-returns-to-scale
(Berk and Green, 2004), that managers choose investments based on their benchmark and flow-performance
sensitivity (Brennan (1993), Admati and Pfleiderer (1997), Buffa et al. (2014)), and that skill reflects a
choice to acquire information over the business cycle (Kacperczyk et al. (2014), Kacperczyk et al. (2016)).
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on their private information in financial markets, which then feed back into the determinants

of the optimal contract in the principal-agent problem between the manager and investors.

The optimal affine contract for fund managers that we derive features three components:

a fixed fee, a performance-based reward that evaluates a fund manager for its performance,

and benchmarking relative to the ex-ante mean-variance efficient portfolio. In contrast to

such frameworks as those of Basak and Pavlova (2013) and Buffa et al. (2014), the optimal

benchmark we derive in our economy is endogenous and arises as an outcome of the com-

pensation contract. Since the performance-based reward influences the aggressiveness with

which fund managers trade on their private information, it feeds into the informativeness of

asset prices in equilibrium. Through this channel, the performance-based piece impacts the

overall uncertainty that fund managers face when choosing their portfolio, and consequently

their incentives to exert effort to acquire private information. By benchmarking, the investor

effectively endows the fund manager with a tilted short position in the benchmark portfolio,

which leads it to hedge its benchmark risk with direct investors in financial markets. This

tilt, consequently, impacts the level of risk-sharing between the investor and manager. Our

analysis therefore highlights a separation between information acquisition and risk-sharing

incentives in delegated asset management.

To illustrate how the optimal affine contract varies with the asset environment, we per-

form comparative statics when managers are more risk-averse by altering the overall risk

in the economy and the cross-sectional correlation of asset payoffs. As the overall level of

uncertainty about asset payoffs increases, the optimal contract places less emphasis on the

performance-based component, and more weight on benchmark-based incentives. This is

optimal because the marginal benefit of exerting effort to learn is higher for fund managers,

even in the absence of incentives, the higher the level of uncertainty in the economy, and the

shift toward benchmarking reflects the increased value fund managers are expected to add

over direct investment by the fund’s investors. When the correlation of payoffs increases, in

contrast, the optimal contract instead puts more weight on the performance-based compo-
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nent, and less on benchmarking. This occurs because the increased correlation both reduces

the cross-section of risk in the economy about which fund managers can learn, and makes

prices more revealing about the aggregate sources of risk. As such, managers reduce the

overall effort that they exert to acquire private information, which motivates the need for

stronger performance-based incentives and lessens the benefit of benchmarking for sharing

risk.

Our model has novel implications for identifying skill among fund managers. We highlight

a gap between our model-implied measure of fund manager skill, the reduction in uncertainty

about asset payoffs, and empirical statistics meant to capture asset management ability, such

as the active share proposed by Cremers and Petajisto (2009) and the return gap of Kacper-

czyk et al. (2008). When the overall level of payoff uncertainty increases, fund managers

devote more effort to acquiring private information and take more active positions, when

compared to the benchmark portfolio, and this is correctly reflected in our theoretical ana-

logues of the two empirical measures. When asset payoffs become more correlated, however,

fund managers exert less overall effort to learn, but may appear more active because the

optimal benchmark, the ex-ante mean-variance efficient portfolio, takes smaller positions in

the risky assets because of the diminished benefits from diversification. Consequently, our

analysis cautions in the interpretation of these empirical measures as proxies for managerial

ability, and also highlights the importance of endogenizing the benchmark for theoretical

predictions.

The interaction between incentives and learning also delivers rich cross-sectional implica-

tions on asset returns. The hedging demand of fund managers for the benchmark portfolio,

for instance, raises the prices of assets held short in the benchmark portfolio, lowering their

risk premium in equilibrium to compensate direct investors for providing liquidity. Our model

can also help rationalize the excess comovement in asset returns, documented in Pindyck and

Rotemberg (1990) and Barberis et al. (2005). As prices serve as an endogenous mechanism

for fund managers to coordinate on which private information to acquire, their correlated
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decisions are amplified in the payoff variation reflected in prices through their trading.

We then investigate two extensions of our model, one in which trading by managers

occurs over multiple periods, and one in which we endow investors with background risk

that is correlated with the returns on the assets in the economy. The dynamic extension

illustrates that having multiple periods introduces intertemporal incentives for fund managers

to acquire private information and, more importantly, can provide investors with a time-series

of past fund behavior to improve monitoring. We show that the historical variance of a fund’s

return gap, downweighted by the dispersion of asset payoffs, provides a consistent measure

of average portfolio selection skill, and argue how investors learning about a fund manager’s

skill through this channel could help explain the nonlinear relationship between performance

and fund flows observed empirically. With background risk, we show that managers with

skill are forced to internalize this background risk by the appropriate adjustment of the

benchmark against which they are evaluated. Finally, we distinguish our mechanism of

learning by managers from the literature on learning about managers.

Our work is related to the literature on delegated asset management under asymmetric

information. Garćıa and Vanden (2009) and Gárleanu and Pedersen (2015) explore the

implications for market efficiency of the formation of mutual funds in the presence of costly

information acquisition in a single asset setting. Garćıa and Vanden (2009) also consider

a principal-agent model of delegated asset management, yet they model management fees

as a fixed fraction of assets under management and assume managers pay a fixed fee to

become informed. Our work focuses on the optimal affine contract between investors and

fund managers in a multi-asset principal-agent setting. Kapur and Timmermann (2005)

investigate the impact of relative performance contracts on the equity premium and on

portfolio herding. Dybvig et al. (2010) and He and Xiong (2013) consider the market-timing

benefits of benchmarking in a partial equilibrium setting. Kyle et al. (2011) investigates the

incentives to acquire information under delegated asset management for a large informed

fund, in the spirit of Kyle (1985), while Glode (2011) and Savov (2014) microfound delegated
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asset management as a vehicle for investors to hedge their background risk. Huang (2015)

studies the market for information brokers in an equilibrium setting with optimal contracting

to explain home bias, comovement in asset idiosyncratic volatility, and the possibility of

herding and equilibria multiplicity.

This paper is connected to the growing literature on equilibrium asset pricing with flexible

information acquisition. Van Nieuwerburgh and Veldkamp (2009, 2010) and Kacperczyk et

al. (2016) study the flexible information acquisition problem faced by investors who have

limited attention that they can allocate to learning about risky asset payoffs, the latter of

which focuses on business cycle implications. Maćkowiak and Wiederholt (2012) investigate

the information acquisition decisions of investors who have limited liability, while Huang et

al. (2016) models information acquisition as part of a dynamic reputation game between the

fund and its investors. In contrast to these studies, we model the information acquisition of

managers as being subject to agency issues within an equilibrium framework.

In addition, our work is also related to the literature on manager incentives and bench-

marking in the asset management industry. Basak and Pavlova (2013) and Buffa et al. (2014)

investigate the asset pricing implications of benchmarking against an exogenous index in a

multi-asset setting, with Buffa et al. (2014) embedding benchmarking in a principal-agent

framework. Buffa and Hodor (2017) explore the asset pricing implications of heterogeneous

benchmarking. Starks (1987) studies the role of symmetric versus bonus performance-based

contracts in incentivizing asset managers. Brennan (1993) examines the CAPM implications

of delegated management with both exogenous and optimal benchmarking. Admati and

Pfleiderer (1997) analyzes benchmarking and manager incentives in a partial equilibrium

framework in which managers have superior information to investors, while van Binsbergen

et al. (2008) explores how benchmarking can overcome moral hazard issues that arise with

decentralization. Cuoco and Kaniel (2011) study the implications for asset pricing when

manager compensation is linked to a benchmark, and Li and Tiwari (2009) study nonlinear

performance-based contracts in the presence of benchmarking. In our work, we derive the
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optimal benchmark jointly with the optimal affine contract and equilibrium prices, and study

their empirical implications for intermediary holdings and asset returns.

2 A Model of Delegated Asset Management

In this section, we present a model of delegated asset management with flexible information

acquisition in a multi-asset framework. We first introduce the asset environment, and then

discuss the agency friction that fund managers face in portfolio allocation decisions. Finally,

we define the asset market equilibrium.

2.1 The Environment

Asset Fundamentals There are three dates t = {0, 1, 2} . Suppose that there are N assets

with risky payoffs fi, i ∈ {1, 2, ..., N}, which realize at date 2 that satisfy the following

decomposition:

fi =


b1θ1

aiθi + biθ1, i ∈ {2, ..., N}

The common component θ1 can be viewed as aggregate payoff risk, with bi being the

loading on this aggregate payoff risk of the asset, while the aiθi, i ∈ {2, ..., N} are the asset-

specific components of the risky asset payoffs. This payoff structure we employ is similar to

that in Buffa et al. (2014) and Kacperczyk et al. (2016). For interpretation of θ1 as aggregate

payoff risk, we assume that a1 = 0, b1 = 1 and that the first asset is a composite asset of

the remaining assets in the economy with a payoff that loads only on this aggregate payoff

risk.3 In addition to the N assets, there is a risk-free asset, which can be viewed as asset 0,

in perfectly elastic supply with gross return Rf > 1. Asset i has price Pi at t = 1, and we

stack the N prices into the N ×1 vector P. In what follows, bold symbols represent vectors.

3Kacperczyk et al. (2016) employ a similar assumption for the asset payoff structure. While not essential

for our analysis, it helps with exposition by ensuring that the map from risk factors
{
θ1, {θi}i∈{2,...,N}

}
to

asset payoffs {fi}i∈{1,...,N} is invertible.
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For convenience, we define the vector Θ =

[
θ1 θ2 · · · θN

]′
such that:

f = FΘ,

for the N ×N matrix F, which is invertible since F is lower triangular provided that bi > 0

∀i. In our setting, aggregate risk arises through the correlation structure of asset payoffs,

and is represented by the common fundamental θ1.
4

We assume that all agents in our model have a normal prior over Θ, and initially believe

that Θ ∼ N
(
Θ̄, τ−1

θ IdN
)
, where τθ is the common precision of the prior over the hidden

factors driving asset payoffs. One can view the prior as reflecting all publicly available

information about the asset payoffs, such as financial disclosures, earnings announcement,

and macroeconomic news that agents have before contracting at date 0.

Agents There are two types of agents in the market: investors and managers. Both agents

are risk averse with CARA preference over their consumption. Investors can invest directly

in asset markets or delegate management of their portfolio to fund managers. At date 0

a fraction χ of investors delegate management of their portfolio to fund managers, and a

fraction 1− χ manage their portfolio directly. The managers have skills, which means that

they can exert unobservable effort to obtain private signals about asset fundamentals.5 This

is what we refer to as delegated learning channel. Each manager owns and operates one fund.

The fraction χ is observable public information. Similar to van Binsbergen et al. (2008), we

analyze the incentive contract between investors and managers by modeling the one layer

delegation problem, i.e., investors directly offer compensation contracts to fund managers.6

4This is in contrast to Kacperczyk et al. (2016), where aggregate risk takes the form of the asset funda-
mental with a higher supply variance. Our derivations will, in fact, be valid more generally for any arbitrary
invertible matrix F.

5Brown and Davies (2016) also studied the moral hazard in the active asset management industry in a
partial equilibrium framework. They assume the effort exerted by managers are directly linked to returns,
while we focus on the incentives to acquire costly information.

6As long as fund managers cannot commit to their future actions, it will not matter whether the investors
or the managers offer the contract.
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Our approach is different from Garćıa and Vanden (2009) and Gárleanu and Pedersen (2015),

who investigate the fee setting by asset management companies. Given the relatively stable

mutual fund fee structure and that the initial size of funds is fixed by assumption, we focus

on studying the direct incentive provision from the compensation contract to managers. We

discuss the problem faced by each of these agents in turn.

2.2 Fund Managers

Fund managers face a portfolio choice problem at date 1. Given their information and initial

AUM W0, fund managers choose a portfolio allocation strategy ωS1 at date 1 across the N

assets after observing market prices P, so that the final AUM W S
2 is given by:

W S
2 = RfW0 + ωS′1

(
f −RfP

)
.

In addition to a portfolio choice problem, fund managers also face an information acquisition

choice. We assume managers must exert costly effort at date 0 to acquire information about

asset payoffs at date 1.

While asset prices are publicly observable, managers acquire a vector of noisy private

signals sj about θ1 and the asset-specific component of asset payoffs θi, i ∈ {2, ..., N} .

They are able to exert effort e = e′1N×1 ≥ 0, with e ≥ 0 element-by-element, to reduce the

variance of these signals Σ (e) . Although investors are matched with fund managers, the

level of effort that fund managers exert is not observable.

Fund manager j receives a vector of noisy signals sj about Θ given the effort level ej:

sj = Θ + Σj (ej)
1/2 εj,

where εj ∼ N (0N×1, IdN) is independent across j and satisfies the Strong LLN
∫∞
−∞ εjdΦ (εj) =

0N×1 for Φ (·), the CDF of the standard normal distribution. Following Kacperczyk et al.

(2014), we assume that Σj (ej) is a diagonal matrix with entry K−1
ii (eij) that satisfies a
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monotonicity condition.7 We assume that Σj (ej) is diagonal so that there is a direct link

between the effort manager j exerts to learn about the ith component of Θ, eij, and the

precision of the signal manager j receives about that component, sij.
8 The monotonicity

condition we impose ensures that a higher level of effort (weakly) implies the manager re-

ceives more informative signals. To ensure prices are always informative, we regulate Σ (ej)

by assuming that supi Σ (0N×1) ≤ M−1 < ∞.9 In what follows, we choose the parameteri-

zation Kii (eij) = M + eij. One can view this observation of private information by a fund

manager as their security selection or “stock picking ability”.

Fund managers have CARA preferences over their compensation from investors CS
0 and

the monetary cost of exerting effort of information acquisition:

u
(
CS

0 ;ωS1 , e
)

= − exp
(
H (e)− γMCS

0

)
,

where γM is the coefficient of absolute risk aversion and H (·) is the dollar cost for effort e,

an increasing and (strictly) convex function in each of its arguments, such that ∂iH (e) > 0

and ∂iiH (e) ≥ 0, and H (0N×1) = 0 as a normalization. We specialize H (e) to the case

that H (e) = 1
2
h (e′1N×1) , where h′ (·) > 0, h′′ (·) ≥ 0, and h(0) = 0. This functional form

induces substitutability in manager learning decisions, and therefore a tradeoff to learning

too much about one source of asset-specific risk. Since fund manager effort is unobservable,

a fund manager must find it optimal to choose the effort level recommended by the investor,

which gives rise to the incentive compatibility (IC) constraint:

e ∈ argsupe∈RN+E

[
sup
ω∈RN

E
[
u
(
CS

0 ;ωS1 , e
′) | Fj]] (IC) , (1)

where Fj is the fund manager’s information set, and the optimization implies a natural tim-

7The monotonicity condition we require is that : Σj
(
e′′j
)
−Σj

(
e′j
)

is positive-semi definite (PSD) whenever
e′j ≥ e′′j .

8Our results are robust to the more general specification of Σj (ej).
9Our results will be valid in the limit that M ↘ 0.
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ing to their decisions. The fund manager first determines the effort to exert based on the

compensation contract CS
0 with investors at date 0. At date 1, the fund manager observes

prices and private signals, and makes portfolio allocation choice. The fund manager’s infor-

mation set is then the sigma algebra generated from observing the vector of prices P and its

private signals sj, Fj = σ
(
P, sj (ej)

)
.

2.3 Delegating Investors

Investors have CARA preferences over the final AUM at date 2, W S
2 . They choose a compen-

sation contract at date 0, CS
0 , for a manager to maximize their utility subject to incurring

the cost of incentivizing the manager:

U
(
W S

2 , C
S
0

)
= − exp

(
−γ
(
W S

2 − CS
0

))
,

where γ > 0 is their coefficient of absolute risk aversion. Since investors only have access

to public information, they have what we refer to as the common knowledge or public

information set at t = 1, F c, which is the sigma algebra generated by observing prices

F c = σ (P) .

The investors solve the optimization problem when investing with managers:

V S
0 = sup

CS0

Ee(CS0 ) [U (W S
2 , C

S
0

)]
, (2)

subject to the IR and IC constraints, where Ee(·) [·] is understood as the expectation under

the probability distribution induced by the recommended effort level e
(
CS

0

)
. Consequently,

V S
0 is the value of investing with a fund manager.

Similar to Kapur and Timmermann (2005), Buffa et al. (2014) and Sotes-Paladino and

Zapatero (2017), we restrict our attention to the space of affine contracts between investors

and fund managers.10 A key reason is to advance our understanding of how the incentives

10In practice, investors pay fees to advisory firms who then compensate the managers through the incentive
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faced by mutual fund managers extend to an equilibrium setting. Previous partial equilib-

rium studies have found negative results on affine incentive contracts for fund managers.

Stoughton (1993) and Admati and Pfleiderer (1997) both show that affine contracts provide

no incentives for fund manager effort, while regulations restrict the form of compensation

contracts to only be symmetric around benchmark returns. SEC regulation restricts the form

of compensation contracts for fund managers to fulcrum fees, which are symmetric around

the returns of the fund’s benchmark.11 We analyze the optimal contract in the general linear

setup and show that affine contracts can provide managerial incentives when asset prices

that contain private information feed back into the compensation contracts.12 In addition,

since we are solving for noisy rational expectations within the linear paradigm of Grossman

and Stiglitz (1980) and Hellwig (1980), such a restriction may be seen as a natural extension

of the focus on linear equilibria.

2.4 Direct Investors

Direct investors allocate their capital W0 directly in financial markets and have CARA

preferences over the final AUM at date 2, WD
2 . They choose a portfolio ωD1 at date 1 for

their fund after observing the market prices P, so that the final AUM WD
2 is given by:

WD
2 = RfW0 + ωD′1

(
f −RfP

)
.

contracts. Since mutual fund fees are relatively stable over time (Pástor and Stambaugh, 2012), we focus on
the manager incentive problem directly.

11The 1970 SEC amendment to the Investment Company Act of 1940 requires that performance-based
contracts should not contain the “bonus” performance-based fee and should only be symmetric around the
benchmark returns.

12Starks (1987) shows that linear contracts will lead to optimal portfolio risk exposure by managers,
but an under-provision of effort compared to the first-best. As such, the contracts we characterize may
potentially be suboptimal in incentivizing managers to acquire information. As Starks (1987) emphasizes,
however, asymmetric contracts embedded with bonus incentives lead to an even lower level of effort than in
the symmetric case, as well as suboptimal risk exposure.
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Direct investors make investment decisions to maximize their:

V D
0 = sup

wD1

E[U
(
WD

2

)
] = sup

wD1

E[− exp
(
−γ
(
WD

2

))
],

where γ > 0 is their coefficient of absolute risk aversion. In the Internet Appendix, we provide

a micro-foundation for direct investing in which investors delegate their portfolio choice

decision to unskilled fund managers who are incapable of acquiring private information.

2.5 Free Entry and Asset Markets Clearing

Free Entry We assume that investors can freely choose to invest with a fund manager or

to invest directly. Since there is a fixed fraction of funds available to investors, in equilibrium

they must be indifferent between these two options. This implies that the indirect utility to

investing with a fund manager V S
0 or to investing directly V D

0 must be equal, or

V S
0 = V D

0 .

This free-entry assumption is similar to that in Berk and Green (2004), where the “net

fees” of funds with managers versus direct investing offers similar returns, while “gross of

fees” reflects manager skill. Furthermore, Berk and van Binsbergen (2015) find that active

managers capture the surplus in the advisory relationship, and this will show up as a fixed

fee in our affine contract. Given that the investment decisions of fund managers will be

independent of initial wealth in this CARA-normal setting, we are abstracting from the

decreasing returns to scale at the fund level that are observed empirically, the consequences

of which are explored, for instance, in Berk and Green (2004) and Pástor and Stambaugh

(2012). Since investors in our model are indifferent to with whom they invest, the market

for intermediation between investors and managers then trivially clears.
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Market Clearing and Equilibrium Let ωS1 (i) be the portfolio allocation of the fund

manager i ∈ [0, 1] , and similarly with ωD1 (i) for direct investor i. Given that direct investors

are atomistic, they will all follow the same portfolio strategy, ωD1 (i) = ωD1 . We assume the

supply of the asset is given by the vector x for the N assets. Since there are a fraction χ of

investors delegating their investment decisions to the fund managers, and a fraction 1−χ of

direct investors, market-clearing requires that:

χ

∫ 1

0

ωS1 (i) di+ (1− χ)ωD1 = x. (3)

As is common in the literature, we assume that asset supply x is noisy to prevent beliefs from

being degenerate.13 We assume that, from the perspective of all agents, x ∼ N (x̄, τ−1
x IdN)

has a multivariate normal distribution, and x̄ > 0 (element-by-element). Since all fund

managers are atomistic, they take prices as given and each has negligible impact on the

price formation process.

t = 0

• Investors choose to invest with
fund managers or to invest
directly.

• Investors solve for the optimal
contracts.

• Fund managers choose effort
given the contract.

t = 1

• Signals arrive.

• Assets are traded and prices are
formed.

• Direct investors choose portfolio

ωD1 after observing asset prices.

• Fund managers choose portfolio

ωS1 after observing asset prices
and private signals.

t = 2

• Assets payoffs are realized.

• AUM of managers WS
2 and

direct investors WD
2 is realized.

Figure 1: Timeline

Figure 1 illustrates the time line. We solve for a perfect Bayesian noisy rational expec-

tations equilibrium defined as follows:

13In the absence of supply noise, beliefs between the common component of payoffs θ1 and the asset-
specific component θi, i ∈ {2, 3, ..., N} would have to be perfectly negatively correlated once prices P (Θ) are
observed, as a result of Bayesian updating. Since there are N hidden states Θ and only N assets, the vector
price function P (Θ) is a rank-deficient map from RN to RN .
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A perfect Bayesian noisy rational expectations equilibrium in this economy is a list of pol-

icy functions e
(
CS

0

)
, ωS1 (sj,P) , and ωD1 (P) , compensation contract CS

0 for fund managers,

and prices P such that:

• Direct Investor Optimization: Given prices P, and information set F c, ωD1 (P) satisfies

each direct investor’s IR constraint, and delivers expected utility V D
0 .

• Delegating Investor Optimization: Contract CS
0 solve the investor’s optimization prob-

lem (2) and delivers expected utility V S
0 .

• Fund Manager Optimization: Given contract CS
0 , prices P, and information set Fj,

e
(
CS

0

)
, and ωS1 (sj,P) solve each fund manager’s IC constraint.

• Market Clearing: The asset markets clear through equation (3).

• Consistency: Investors (direct and delegating) form their expectations about Θ based

on their information set F c, while fund managers form their expectations based on

their information set Fj, according to Bayes’ rule.

• Sequential Rationality: For each realization of prices P and private signals sj, fund

managers find it optimal at date 1 to follow investment policy ωS1 (sj,P).

3 The Equilibrium

We search for a symmetric linear equilibrium in which we conjecture that asset prices P (Θ,x)

take the linear form:

P (Θ,x) = Π0 + ΠθΘ + Πxx, (4)

where Rank (Πθ) , Rank (Πx) = N. As discussed above, we also focus on linear contracts.

We first derive the conditional beliefs of investors and fund managers. We then derive the

optimal investment policy for direct investors and then for fund managers, who face both

effort and portfolio choice decisions that must be incentive compatible. Imposing market
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clearing allows us to solve for equilibrium asset prices. Finally, we solve for the optimal

contracts offered by delegating investors to fund managers.

3.1 Learning

We begin by deriving the learning process for direct investors. Since direct investors have a

normal prior, after observing the linear Gaussian signals P (Θ) , they update to a posterior

for Θ that is also Gaussian Θ | P (Θ) ∼ N
(

Θ̂,Ω
)

with conditional mean Θ̂ and conditional

variance Ω, given by:

Θ̂ = ΩτθΘ̄ + ΩτxΠ
′
θ (ΠxΠ

′
x)
−1

(P− Π0−Πxx̄) , (5)

Ω−1 = τθIdN + τxΠ
′
θ (ΠxΠ

′
x)
−1

Πθ. (6)

To get to the posterior of fund manager j, we recognize that we can first have the manager

update his beliefs based on the publicly observed prices, and then treat these beliefs as

an updated prior for when the manager then observes its vector of private signals sj. After

observing the public signals P (Θ) , the new prior of fund manager j from above is Θ |P (Θ) ∼

N
(

Θ̂,Ω
)
, with Θ̂ and Ω given by equations (5) and (6), respectively.

After observing its vector of private signals, the posterior of fund manager j is also Gaus-

sian Θ | {P (Θ) , sj} ∼ N
(

Θ̂ (j) ,Ω (j)
)

with conditional mean Θ̂ (j) and the conditional

variance Ω (j) summarized by the following two expressions:

Θ̂ (j) = Ω (j) Ω−1Θ̂ + Ω (j) Σj (ej)
−1 sj, (7)

Ω (j)−1 = Ω−1 + Σj (ej)
−1 . (8)

This completes our characterization of learning by direct investors and fund managers. Hav-

ing solved for the conditional beliefs of all agents, we next analyze the optimal portfolio

investment and effort policies of direct investors and fund managers.
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3.2 Optimal Policies of Direct Investors

We begin our analysis of optimal policies with direct investors. Given investors have CARA

preferences and payoffs are normally distributed, it follows that we can express the investor’s

optimization problem as:

V D
0 = sup

ω1
D

RfW0 + ω1
D′
(
F Θ̂−RfP

)
− γ

2
ω1

D′FΩF ′ω1
D,

given the properties of log-normal distributions and the monotonicity of the utility function

in wealth. This optimization has the following straightforward interior solution:

ω1
D =

1

γ
(FΩF ′)

−1
(
F Θ̂−RfP

)
, (9)

which is consistent with mean-variance preferences in this normal setting. The superscript D

indicates that this is the optimal investment portfolio for direct investors given information

set F c.

We can also calculate the expected utility of direct investors, V D
0 . By the law of iterated

expectations, first conditioning on F c, the expected utility to direct investors, V D
0 , is then:

V D
0 = −E

[
exp

(
−γ
(
WD

2

))]
= −E

[
exp

(
−γRfW0 −

1

2
Z′Ω−1Z

)]
,

where Z = Θ̂ − RfF−1P is the ex ante excess return to asset fundamentals, and Z ∼

N (µ,ΩZ) .14

3.3 Optimal Policies of Fund Managers

Fund managers must be incentivized since they add value to the investor’s portfolio through

their hidden, costly acquisition of private information. As such, they can no longer be

perfectly monitored since they are free to choose Fj−measurable portfolio strategies, ωS1 =

14See Appendix A.2 for the detailed proof.
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ωS1 (P, sj) , and F c ⊆ Fj. Consequently, it is not generically possible for the investor to

invert the private signals sj the manager received from the realized portfolio excess payoff

W S
2 −RfW0 to ensure that the manager followed the investor’s recommendation contingent

on observing signals sj. What is worse is that, even if the investor could observe sj directly,

the investor could not ex post verify that the fund manager exerted the recommended effort

level e to obtain the desired precision of the signals.15

These considerations motivate us to consider compensation schedules CS
0 that are con-

tingent on outcomes observable to investors at date 2 and, as such, we consider contracts

that condition on the realized portfolio return per share of the fund W S
2 − RfW0 and the

realized excess payoffs of the risky assets f −RfP, CS
0 = CS

0

(
W S

2 −RfW0, f −RfP
)
.16 We

focus on linear contracts and conjecture the optimal contract CS
0 is in the form of

CS
0 = ρ0 + ρS

(
W S

2 −RfW0

)
+ ρ′R

(
f −RfP

)
. (10)

Conditioning compensation on the realized excess payoff of the portfolio potentially helps to

align the incentives of the fund manager and investor by giving the manager an equity stake

in the portfolio. This feature is similar to the fixed fraction of assets under management fee

that mutual funds charge in practice, consistent with the recent finding by Ibert et al. (2017)

using a unique data set of compensation on Swedish mutual fund managers. In addition,

allowing the compensation schedule to vary with observed excess payoffs f − RfP can also

improve incentives by providing flexibility for the contract to take into account realized

market conditions through f −RfP.

Since their effort and portfolio choice are unobservable, fund managers choose incentive

15In part, the assumption that the variance of private signals is regulated from above in the sup norm by
1
M would ensure that there are limits to monitoring low levels of effort by observing very extreme realizations
of private signals.

16We also considered a version in which the compensation contract conditions on the realized return of
direct investors WD

2 . Since WD
2 is based on public information, and is exogenous to the choices of any fund

manager, it has no substantive impact on their information acquisition decisions. It does, however, affect
the hedging incentives in their portfolio choice. In addition, tournament incentives are not prevalent in the
asset manament industry. See Kapur and Timmermann (2005) for this type of incentive contract.
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compatible portfolios that solve the inner optimization program (1). Conditional on this

portfolio choice, which has both a mean-variance component and a hedge against the excess

payoff portion of their contract, they choose their optimal effort to minimize the conditional

variance of their excess payoff. This is summarized in Proposition 1.

Proposition 1 The optimal portfolio of a fund manager ωS is given by:

ωS1 (j) =
1

γMρS
(FΩ (j)F ′)

−1
(
F Θ̂ (j)−RfP

)
− 1

ρS
ρR,

and the optimal level of effort e satisfies:

Diag
[(

Ω−1 +M · IdN + diag (e)
)−1
]
≤ h′ (e′1N×1) 1N×1, (11)

where Diag is the diagonal operator. If F is diagonal, then this condition further reduces to

1

Ω−1
ii +M + ei

≤ h′ (e′1N×1) ∀ i ∈ {1, ..., N} . (12)

From Proposition 1, the linear contract induces the fund manager to take the optimal

mean-variance portfolio given its beliefs, with effective risk aversion γMρS, corrected by a

hedging position − 1
ρS
ρR that takes into account that the manager is exposed to payoff risks

f−RfP independent of the return on the portfolio he manages. The optimal level of effort

e from equation (11) is determined only by the second moments of the conditional excess

payoff F Θ̂ (j) − RfP, and seeks to minimize Ω (j) , since Ω−1 + Σj (ej)
−1 = Ω (j)−1 is the

expression within the trace operator in the condition for optimality.

The correlation structure of asset payoffs F induces substitutability in learning across

asset fundamentals Θ for fund managers, in addition to the ex post correlation in beliefs cap-

tured in Ω. Fund managers choose their effort recognizing that learning about asset-specific

fundamental θi, i ∈ {2, 3, ..., N} also reveals information about the aggregate fundamental θ1

through prices, which further reveals information about the other asset-specific fundamen-
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tals θj for j 6= i. In the special case that F is diagonal, the FOC for the optimal effort from

Proposition 1 reduces to equation (12). As one can see from equation (12), the benefit to the

fund manager for increasing effort becomes separable across assets 1
Ω−1
ii +M+ei

. With (weakly)

convex costs to exerting effort, it then makes sense for the fund manager to allocate all its

attention to the asset that reduces the conditional variance of its excess payoff the most.

Consequently, one would expect corner solutions to the fund manager’s optimal effort prob-

lem when F is diagonal, and for the manager to allocate its attention to the fundamentals

for which he is able to equate its marginal benefit of learning with the marginal cost.

Having characterized the optimal policies of direct investors and fund managers, we solve

for equilibrium asset prices by imposing market clearing. Appendix A.1 contains the solution

of equilibrium asset prices.

We can then examine how different components of the linear contract ρ0, ρS, and ρR

impact the information acquisition choice of fund managers. Substituting equation of equi-

librium asset prices (A1) into equation (11) from Proposition 1, we can find the equilibrium

level of effort exerted by fund managers in a symmetric equilibrium:

Diag


 (τθ +M) · IdN + τx

(
χ

γMρS

)2
(M · IdN + diag (e)) ·

(F ′F )−1 (M · IdN + diag (e)) + diag (e)


−1 ≤ h′ (e′1N×1) . (13)

Importantly, it is the investor’s choice of the sensitivity of the fund manager’s compensation

to the fund’s return ρS that determines how the contract impacts the managerial incentives

to acquire private signals, along with the manager’s risk aversion γM and parameters that

characterize the conditional uncertainty of asset payoffs given prices. With this condition

characterizing the optimal effort of the fund manager in equilibrium, we can perform sev-

eral comparative statics with equation (13) to understand how optimal effort changes with

different features of the economic environment, taking into account that changes in effort

change the informational content of prices. These comparative statics are summarized in

Proposition 2.
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Proposition 2 The optimal choice of fund manager effort e, in equilibrium, is increasing

(element-by-element) in the coefficient of manager risk aversion, γM , and the sensitivity of

manager compensation to its realized portfolio return, ρS. It is decreasing in the precision of

the prior on Θ, τθ, the precision of the prior on the liquidity trading x, τx, and the fraction

of fund managers, χ.

From Proposition 2, in equilibrium, the sensitivity of the manager’s compensation, ρS,

increases the effort that the fund manager exerts to learn about the payoffs of risky assets.

Intuitively, the more the manager’s compensation depends on the fund’s excess payoff, the

more incentive the manager has to acquire information to improve the fund’s performance.

Similarly, the more effectively risk-averse the manager (higher γM), the less aggressively it

trades on its private information and the less informative asset prices are, in equilibrium.

This increase the benefit of learning, and causes the manager to exert more effort to reduce

the uncertainty of the fund’s final AUM. In addition, as one would expect, the more uncertain

the economic environment (lower τθ, τx, and χ), the more beneficial for the manager to exert

effort to achieve the performance objectives of the fund.

3.4 The Optimal Affine Contract

We now focus on the optimal linear contract CS
0 that investors offer to the fund managers.

Having solved for the determinants of optimal fund manager effort, in equilibrium, we provide

a characterization of the optimal linear contract, which is summarized in Proposition 3.

Proposition 3 The optimal affine contract for a fund manager is a N + 2 × 1 vector

(ρ0, ρS, ρR) that sets

ρR = −
(
ρS +

γ

γM
(1− ρS)

)
ω0,

where

ω0 =
1

γ
F ′−1V ar

(
Θ−RfF−1P

)−1
E
[
Θ−RfF−1P

]
=

1

γ
F ′−1 (ΩZ + Ω)−1 µ,
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is the ex ante mean-variance efficient portfolio, and

ρ0 =
1

γ
log

V D
0

vS
,

where vS is given in the Appendix. Furthermore, the optimal sensitivity on the realized excess

payoff of the fund manager’s fund ρS satisfies the FONC (A5) given in the Appendix.17

To help explore the implications of Proposition 3, we rewrite the optimal linear contract

for a fund manager as:

CS
0 =

1

γ
log

V D
0

vS
+ ρSω

S
1 (i)′

(
f −RfP

)
−
(
ρS +

γ

γM
(1− ρS)

)
ω0′ (f −RfP

)
=

1

γ
log

V D
0

vS
+ ρS

(
ωS1 (i)′ − ω0′) (f −RfP

)
− γ

γM
(1− ρS)ω0′ (f −RfP

)
The first piece of the contract is a constant fee that ensures that, net fees, investors are

indifferent between investing with fund managers and direct investing. The second piece is

the manager’s compensation based on the fund’s performance relative to the ex ante mean-

variance portfolio ω0. The third adjusts compensation by the performance of an index that

tracks the ex ante mean-variance efficient portfolio investors would choose at the time that

the contract is signed. Essentially, compensation beyond a fixed fee is offered for the value

added by the manager over the investment strategy that investors could achieve through

direct investment without acquiring any public or private information.

Notice that ω0 plays the role of a passive benchmark for fund manager compensation,

since it is a portfolio whose holdings are chosen based on only public information at t = 0.18

As such, benchmarking is a feature of optimal contracting for delegated asset management

with asymmetric information. Under certain conditions, this passive portfolio is also featured

17Substituting for Ω with equation (A1), ej with equation (13), and ρR from Proposition 3 into the FONC
(A5), we can then solve for the fixed point to find the equilibrium value of ρS .

18The ex ante mean-variance portfolio will also be the market portfolio if trading is allowed to occur at
t = 0, since all investors and managers are initially identical. As such, one can view the benchmark as the
market portfolio in a CAPM world.
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as an optimal benchmark in Admati and Pfleiderer (1997).19 The sensitivity of manager

compensation to this benchmark, − γ
γM

(1− ρS) , is intimately linked to the sensitivity of

manager compensation to the fund’s performance, ρS. The more risk-averse is the investor

relative to the manager (higher γ
γM

), the greater the magnitude of the sensitivity of the

manager’s compensation to the benchmark portfolio over 1 − ρS, since ρS ∈ [0, 1] . This is

similar to the optimal benchmark in van Binsbergen et al. (2008), which features a tilt that

corrects for differences in risk attitudes between the fund manager and the delegating CIO,

in addition to the minimum variance portfolio.

To further understand the impact of incentives on a fund manager’s actions, we rewrite

the optimal portfolio choice of the fund manager by substituting for ρR:

ωS1 (j) =
1

γMρS
(FΩ (j)F ′)

−1
(
F Θ̂ (j)−RfP

)
+

(
1 +

γ

γM

(
1

ρS
− 1

))
ω0. (14)

The portfolio of fund managers essentially have two components: a mean-variance efficient

portfolio with respect to the manager’s information set, and a long position in ω0. Since

fund manager’s compensation is tied to the benchmark portfolio ω0, they are effectively

endowed with a negative exposure to the benchmark portfolio, and take a long position in

ω0 to hedge themselves. This benchmark-driven demand causes managers to over-invest in

assets that are representative in their benchmark portfolio, and we refer this demand as

hedging demand. This hedging channel is also a feature in Cuoco and Kaniel (2011), Basak

and Pavlova (2013), and Buffa et al. (2014). In contrast to models in which benchmarking is

assumed in the preferences of investors, such as in Basak and Pavlova (2013) and Duarte et

al. (2015), in our model, the benchmark enters into security selection through the hedging

demand of fund managers.

Fund managers here only care about benchmarking insofar as it affects their compensa-

19Admati and Pfleiderer (1997) identify the global minimum variance portfolio, tilted by the assets held
by investors in separate accounts, as the optimal benchmark in a partial equilibrium setting. We derive
benchmarking against the ex ante mean-variance efficient portfolio as a feature of the optimal affine compen-
sation structure for fund managers with market-clearing. Since prices are determined by market-clearing,
the benchmark portfolio is, itself, an equilibrium object that depends on the optimal contract.
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tion, and this leads to the sterilization of the benchmark in the manager’s optimal portfolio.

In addition, the sensitivity of the contract to fund performance ρS is the transmission chan-

nel through which investors influence managerial effort to acquire information, rather than

the benchmarking aspects of the compensation contract. Intuitively, if the fund manager

deviates from the benchmark portfolio, it will choose the most profitable tilted portfolio

based on its private information.

This completes our characterization of the perfect Bayesian noisy rational expectations

equilibrium.

4 Model Implications

In this section, we discuss several empirical implications of our analysis. We begin by in-

vestigating the behavior of intermediaries. We then turn to the asset pricing implications of

our framework, with an emphasis on predictions for the cross-section of asset returns.

4.1 Implications for Intermediaries

Since both the choice of benchmark portfolios and the skill of fund managers are endogenous

and vary with respect to the fundamentals, it allows us to offer empirical predictions without

conditioning on actual compensation contracts and observing managerial effort. By relating

characteristics of the asset fundamentals to potentially observable fund outcomes such as

their holdings and performance through the incentive contracts, our model also provides the

theoretical link between the unobservable effort (skill) of the fund manager and the cross

sections of fund behavior.

We consider a numerical example with two assets to illustrate our predictions. We choose
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as our baseline specification:

F =

 1 0

b
√

1− b2

 , Θ̄ =
1

2

 1

1

 , x̄ =
1

2

 1

1

 ,
In our discussion in this section, we refer to the asset whose payoff depends only on the

aggregate fundamental θ1 as Asset 1, and the asset that also has an asset-specific fundamental

θ2, with loading b on θ1, as Asset 2. The F matrix is set to ensure that the comparative

static of b is implemented keeping the level of uncertainty constant. Finally, we choose the

effort function h (·) to be linear in effort e′12×1, h (e′12×1) = e′12×1, so that the marginal

cost of learning is constant. As a result, any substitutability in learning arises from the

co-variance structure of asset prices. Although we consider a two-asset example for ease of

exposition, we find that our results hold more generically.20

4.1.1 Optimal Effort and Portfolios

The affine incentive contract has two key features: performance-based incentive ρs and

benchmarking. ρs determines how the contract impacts the manager’s incentive to acquire

private information. Panels (a) and (c) in Figure 2 show that as the ex ante uncertainty of

asset payoffs τ−1
θ declines, there are less benefits for the fund manager to acquire information.

The optimal contract then puts more weight on the performance-based component ρs to

provide incentives, and ρs increases with respect to τθ. Since we allow a general structure for

asset payoffs, varying the correlation between asset payoffs also indicates a shift of incentives,

as shown in Panels (b) and (d) of Figure 2. As b increases, the individual asset payoffs are

more correlated with the aggregate component. Hence, the marginal benefit of learning about

asset-specific information is low, while learning about the aggregate component has higher

marginal benefit. Since information about aggregate component becomes more important

as two assets are more correlated, the optimal contract provides more incentives to acquire

20We find qualitatively similar results for a 30-asset case available in Internet Appendix D.
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private information by increasing ρs.

Figure 2: Performance-based Compensation and Optimal Effort

Parameters: τθ = 0.5, τx = 1, b = 0.5, γM = 2, M = 0, χ = 0.3, γ = 1,W0 = 1, Rf = 1.02
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Benchmarking rises endogenously in the optimal contract. To understand the active

fund holdings through the hedging channel, we conduct a comparative statics analysis with

respect to τθ and b. Figure 3 and Figure 4 show the holdings of both fund managers and

direct investors, and the composition of the benchmark portfolio. As τθ increases, the payoffs

of risky assets are less uncertain, and the representation of risky assets in the benchmark

portfolio increases. This is because the benchmark is determined based on the risk-return

trade off of the assets ex ante. Since fund managers’ compensation is benchmarked to ω0,
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they tend to hedge the benchmark risk by longing21 the assets that are representative in

the benchmark portfolio. This hedging behavior drives up the equilibrium prices of the

assets that are representative in the benchmark. The change of correlation structure b

impacts the benchmark portfolio as well. As two assets become more correlated, there is less

diversification benefit in the ex ante mean-variance portfolio. Hence, as b increases in Figure

4 Panel (b), the holdings of both risky Assets 1 and 2 decline in the benchmark portfolio.

Hedging demand through general equilibrium effects is the key to understanding the

implications of benchmarking on the active fund holdings. The expected excess payoffs to

the fundamentals E
[
Θ−RfF−1P

]
contain an additional component:

− 1

Rf
χ

(
1 +

γ

γM

(
1

ρS
− 1

))((
1− χ
γ

+
χ

γMρS

)
Ω−1 +

χ

γMρS
Σj (ej)

−1

)−1

F ′ω0,

that reflects the risk of the fund manager’s benchmark. If the manager pushes up prices be-

cause of hedging demand for assets that are more representative in the benchmark portfolio,

this lowers the expected payoff. This effect helps fund managers, however, because they are

evaluated relative to the performance of the benchmark, which now has a lower expected

payoff. This is a general equilibrium effect through which the asset prices that are most

inflated by benchmarking are those that are the largest constituents of the benchmark port-

folio. As a consequence, fund managers both hedge themselves in their portfolios against the

benchmark, and benefit from the benchmark’s lower expected payoff from their aggregate

hedging demand, as shown in Panels (a) and (c) in Figure 3.

One may wonder what impact benchmarking has on the investment performance of direct

investors. Since fund managers all have a hedging demand for their exposure to the bench-

mark in their compensation, the liquidity providers for this demand are the direct investors.

These direct investors are compensated by tilting their portfolios away from the benchmark,

and toward assets that offer relatively higher excess payoffs. Consequently, direct investors

benefit from benchmarking in fund manager compensation, since they earn risk premia for

21ρR is negative since the managers are compensated relative to the benchmark.
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Figure 3: Portfolios and Benchmark: τθ

Parameters: τθ = 0.5, τx = 1, b = 0.5, γM = 2, M = 0, χ = 0.3, γ = 1,W0 = 1, Rf = 1.02
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Figure 4: Portfolios and Benchmark: b

Parameters: τθ = 0.5, τx = 1, b = 0.5, γM = 2, M = 0, χ = 0.3, γ = 1,W0 = 1, Rf = 1.02
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insuring fund managers against their benchmark exposure.

4.1.2 Performance Evaluation

We next show our central results of examining the link between our model-implied measure

of skills and empirical statistics meant to capture asset manager’s ability. In our framework,

fund manager skill is the optimal effort level given the manager’s incentive contract, and

we define our model-implied measure as the decrease in uncertainty about asset payoffs

|Ω| − |Ω(j)|.22 Given the optimal decision, fund managers choose how much their portfolios

deviate from the endogenous benchmark portfolio. To relate the effort exerted by the fund

manager to the active share that is first introduced by Cremers and Petajisto (2009), we

22Our results are quantitatively similar if we use other model-implied measures of skill, such as ej or
|Ω− Ω(j)|.
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define our active share as the deviation of a fund manager’s portfolio holdings from the

benchmark portfolio. The change in fundamental risk impacts the active share not just from

shifting the learning incentives, but also from rebalancing the benchmark portfolio ex ante.

We derive an analogous expression for the average active share of a fund manager in our

economy AS:

AS =
1

2
E
[
1′
∣∣ωS1 (j)− ω0

∣∣] ,
where ω0 is the benchmark for the fund manager.23 Substituting for ωS1 (j) with equation

(14), ω0 with Proposition 3, Θ̂ (j) with equation (7), and Πθ and Πx with equations (A2) and

(A3), respectively, we can employ results for the expectation of a folded normal distribution

to arrive at:

AS =
1

2γMρS

N∑
i=1

(√
2

π
σie
−µ2

i /2σ
2
i + µi

(
1− 2Φ

(
−µi
σi

)))
,

where:

µi = f ′i
(
Ω−1 + Σj (ej)

−1 + (1− ρS) (ΩZ + Ω)−1)µ,
σ2
i = f ′i

(
Γθτ

−1
θ Γ′θ + Γxτ

−1
x Γx + Σj (ej)

−1) fi,
where fi is the ith column of F−1, and

Γθ = τx

(
χ

γMρS

)2

Σj (ej)
−1 (F ′F )

−1
Σj (ej)

−1 −Rf
(
Ω−1 + Σj (ej)

−1)F−1Πθ + Σj (ej)
−1 ,

Γx =

(
τxΣj (ej)

−1 (F ′F )
−1

Σj (ej)
−1 −Rf

(
γMρS
χ

)2 (
Ω−1 + Σj (ej)

−1)F−1Πθ

)
Σj (ej)F

′.

Figure 5 shows the comparative statics of the theoretical active share and the model-implied

measure of skill |Ω|−|Ω(j)| with respect to the change of τθ and b. As the uncertainty of asset

23One may notice that the definition of active share includes fund leverage. Since the benchmark can
also take leveraged positions, this ensures an equitable comparison of portfolios when measuring manager
activeness.
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payoffs goes up (i.e., τθ decreases), the fund manager exerts more effort to learn and acquires

more private information. Hence, both the benefit of learning and the measure of manager

skills increases as τθ decreases, as shown in Figure 5 Panel (b). By acquiring additional

Figure 5: Active Share and Fund Manager Skill: τθ & b

Parameters: τθ = 0.5, τx = 1, b = 0.5, γM = 2, M = 0, χ = 0.3, γ = 1,W0 = 1, Rf = 1.02
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(d) Manager Skill

private information about asset fundamentals, the fund manager’s portfolio further deviates

from their benchmark portfolio, ω0. Similarly, when asset fundamentals are less uncertain

(higher τθ), the manager acquires less private information and takes a more passive position

in financial markets.

We then obtain comparative statics for fund manager skill as the correlation b between the

asset payoff increases (Figure 5 Panel (d)) through the incentive channel. The active shares

of the two assets, however, go up. This occurs because the change in the correlation between

two assets impacts the ex ante choice of the mean-variance portfolio (i.e., the benchmark

portfolio). The benchmark portfolio reduces its weight in both Asset 1 and Asset 2 as there

29



is less benefit from diversification when risky assets are more correlated. Although fund

managers invest less in Asset 2, which is the asset with both aggregate and asset-specific

components in its payoff, the decline in the weight of Asset 2 in the portfolio is not as much

as the reduction in the benchmark portfolio.

Our prediction on the relation between a fund’s active share and its benchmark also

aligns with the critique of Frazzini et al. (2016). The active share measure can deviate from

the underlying level of manager skill, since the incentives for the fund manager to learn are

not strong enough to dominate the changes in the ex ante choices for benchmark portfolio.

The incentives for the fund manager to acquire private information are shaped by the asset

environment, so the effort exerted by the manager is correlated with its benchmark. While

funds that invest in more volatile stocks are and appear more active, funds that invest

in more correlated stocks may only appear more active because of their benchmark. Our

prediction is also consistent with Jiang and Sun (2014), who studied dispersion in fund

managers’ beliefs about future stock returns based on their active holdings. The degree of

information asymmetry is positively correlated with the dispersion of active mutual funds

holdings under our delegated learning channel, since the incentives for fund managers to

learn rises as the degree of uncertainty of asset payoffs increases, which is proxied by the

idiosyncratic volatility of stock returns in Jiang and Sun (2014).

Our setting also allows us to explore another empirical measure for unobservable mutual

fund actions, return gap (RG), employed in Kacperczyk et al. (2008). We rewrite the fund

manager’s portfolio as:

ωS1 (j) =
γ

γMρS
ωD1 +

(
1 +

γ

γM

(
1

ρS
− 1

))
ω0 +

1

γMρS
F ′−1Σj (ej)

−1 (sj −RfF−1P
)
.

The first two elements reflect the position a fund manager without private information

would take based on public information and the benchmark portfolio, while the last element

captures the speculative bet the fund manager makes based on his informational advantage
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after observing its private signals. Consequently, we view the first two elements as the

“holdings” portfolio that is publicly observable to investors, and measure the expected return

gap between the gross return a fund manager garners and that of this “holdings” portfolio,

RG. We can then construct the expected return gap:

E [RG] =
1

γMρS
µ′Σj (ej)

−1 µ+
1

γMρS
Tr
[
Σj (ej)

−1 (ΩZ + Ω)
]
.

The expected return gap is driven by fund managers trading more aggressively to collect the

risk premia on assets since they face less risk because of their private information, and from

the reduction in overall uncertainty they have when speculating.

Figure 6: Return Gap and Fund Manager Skill: τθ & b

Parameters: τθ = 0.5, τx = 1, b = 0.5, γM = 2, M = 0, χ = 0.3, γ = 1,W0 = 1, Rf = 1.02
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(d) Manager Skill

Figure 6 shows the comparative statics of the expected return gap and the model-implied

measure of fund manager skill. The return gap is moving in the same direction as the skill
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measure of our model when the uncertainty level of the fundamental τ−1
θ declines. The return

gap, however, does not monotonically decrease in the correlation of asset fundamentals. As

the correlation between asset fundamentals increases, there is less overall benefit to learning

since the asset-specific fundamental is less relevant to returns, and the aggregate fundamental

is more revealed by prices to both fund managers and direct investors. The expected return

gap, in contrast, trades off two competing forces. On the one hand, there is increased risk

in asset markets because a higher correlation among asset returns reduces the diversification

benefit to holding both assets. Since they have access to private information, fund managers

take larger exposures to the risky assets than direct investors. Hence, the risk premia earned

by fund managers who bear more risk is higher through learning. On the other hand, the

increased correlation also reveals more information to direct investors about the aggregate

asset fundamental, reducing the information asymmetry between fund managers and direct

investors. These two forces contribute to the humped-shaped return gap in Panel (c) in

Figure 6.

We can also evaluate fund manager performance by computing expected excess returns in

our setting, and compare them across the benchmark portfolio and both fund managers and

direct investors. Given the benchmark portfolio ω0 in Proposition 3, it is straightforward that

a fund manager with portfolio that has an initial wealth W0 who invests in the benchmark

portfolio with final wealth W 0
2 will have an expected excess return:

E
[
W 0

2 −RfW0

]
=

1

γ
µ′ (ΩZ + Ω)−1 µ.

Making use of properties of chi-squared random variables, and that the trace operator is

linear and satisfies Tr [ABC] = Tr [BCA] , we arrive at the expected excess return for direct

investors:

E
[
WD

2 −RfW0

]
=

1

γ
µ′Ω−1µ+

1

γ
Tr
[
Ω−1ΩZ

]
,
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and similarly for a fund manager:

E
[
W S

2 − CS
0 −RfW0

]
= E

[
W 0

2 −RfW0

]
+

1

γM

(
1

ρS
− 1

)
µ′
(
(ΩZ + Ω)−1 + Ω−1 + Σj (ej)

−1)µ
+

1

γM

(
1

ρS
− 1

)
Tr
[(

Ω−1 + Σj (ej)
−1)ΩZ + Σj (ej)

−1 Ω
]
− ρ0.

Kacperczyk et al. (2016) highlights that the additional return that a fund manager earns

arises from their information acquisition decisions. As volatility falls in our setting, the ex-

pected excess return of both direct investors and the benchmark portfolio increases, reflecting

the decreased uncertainty in investing and the more liquidity that their portfolios provide.

In contrast, the expected excess return of fund managers falls as their superior information

degrades. As one may expect, the first piece of fund returns is the benchmark portfolio’s

return.

4.1.3 Decline in Fund Flow and Performance in Active Management

Since 2006, over 90% of U.S. actively managed equity funds failed to beat their benchmark

net of fees. During this time, they have also lost fund flows to passive strategies, both

domestically and globally. A potential explanation for these phenomena is that there has

been a downward trend in the level of skill among active asset managers. As can be seen

in (Figure 5 (d)), our model predicts that a higher (pairwise) correlation between assets

reduces the level of effort that fund managers exert to acquire private information. Cotter

et al. (2016), among others, document a pronounced increase in the level of integration

within and among assets classes, and across countries, since the 2008 financial crisis. Such

an increase in asset correlations can, consequently, explain why fund managers have under-

performed in recent years if their compensation contracts did not adjust to the new asset

environment. Consistent with this view, much of the recent debate has been about reforming

the incentive structure for the asset management industry.
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4.2 Implications for Asset Pricing

Our equilibrium setup allows us to investigate predictions for asset returns. To facilitate our

discussion, we first derive prices in the special case in which there are no fund managers, or

χ = 0. One can then show, in this “no information” setting, that prices p take the following

linear form:

p =
1

Rf
F Θ̄− 1

Rf
γτ−1

θ FF ′x.

Prices in this setting reflect the prior beliefs of investors about the payoff fundamentals Θ̄,

and the net asset supply x. The realized excess payoffs to the fundamentals Θ take the form:

Θ−RfF−1p = Θ− Θ̄ + γτ−1
θ F ′x, (15)

and the unconditional covariance of excess payoffs is given by:

Cov
[
Θ−RfF−1p

]
= τ−1

θ IdN+γ2τ−2
θ F ′τ−1

x F. (16)

In this setting, asset returns are correlated only insofar as their payoffs load on the common

asset fundamental θ1. When there are fund managers who acquire private information, how-

ever, returns become further correlated because conditional beliefs about asset fundamentals

become correlated ex-post through learning from prices. We summarize this feature of our

multi-asset noisy rational expectations equilibrium in Proposition 4.

Proposition 4 The tracking error in the market’s beliefs about the aggregate fundamental

θ1 is related to its tracking error in the asset-specific fundamental θi, i ∈ [2, 3, ...N ] through:

θ1 − θ̂1 =
N∑
i=2

bi

(
θi − θ̂i

)
+
γMρS
χ

(M + e1j)
−1 (x1 − x̂1) ,

where x1 is the liquidity shock to the asset whose payoff loads only on aggregate risk. It

follows that correlation between the asset-specific risky payoff of asset i ∈ [2, 3, ...N ], θi, and
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the aggregate fundamental θ1 depends on bi, such that biCov (θi, θ1 | F c) ≥ 0. The correlation

between the asset-specific risky payoffs of assets i and j, θi and θj, respectively, depend on

their b′s, such that bibjCov (θi, θj | F c) ≤ 0.

Admati (1985) emphasizes that, in a multi-asset setting, asset fundamentals become

correlated through the learning channel once investors observe prices. Our setting allows us

to refine this insight by highlighting the role that the correlation structure of asset payoffs

plays in shaping investor expectations. As a result of the common component of asset

payoff risk θ1, the asset-specific fundamentals θi, i ∈ [2, 3, ...N ] are ex-post correlated with

each other after managers observe prices, and the sign of this correlation depends on the

exposure of each asset to θ1. If payoffs of assets i and j are positively correlated with θ1,

bibj > 0, then these two asset specific shocks are negatively correlated with each other

through learning, since observing two higher-than-expected prices, Pi and Pj, leads investors

to revise their expectations of θ1 upwards, and their expectations of θi and θj downwards.

A similar intuition applies to the correlation between θi and θ1. If bi > 0, then a higher-

than-expected price Pi leads investors to attribute the positive surprise to both a higher θi

and a higher θ1. In this sense, prices act as additional signals about unrelated asset-specific

fundamentals through their common dependence on θ1.
24 In contrast to Admati (1985),

this induced correlation structure through learning also feeds back into the information

acquisition decision of fund managers, and their performance-based incentives.

This induced correlation structure from learning allows us to understand the comovement

of asset prices. Pindyck and Rotemberg (1990), Pindyck and Rotemberg (1993), and Barberis

et al. (2005) find that asset returns appear to comove in excess of the correlation implied by

their dependence on common fundamentals. Veldkamp (2006) rationalizes this phenomena

in a learning framework in which information markets induce complementarities in learning

about a subset of the fundamentals that drive asset prices. Similar to Veldkamp (2006), we

view the limit of no information in our setting, χ ↘ 0, as a benchmark for the correlation

24We expect that these correlations for θi are increasing in asset i′s loading bi on the aggregate payoff
fundamental θ1.
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Figure 7: Excess Comovement: Three Assets Case

This plot compares the correlation of asset returns when fund managers learn from private signals with the

correlation of asset returns under no-information benchmark. We consider a three-asset environment, where

the payoff of Asset 1 depends only on the aggregate fundamental θ1, and the payoffs of Asset 2 and Asset 3

have both aggregate fundamental and the asset-specific fundamentals. The plots report the correlation of

returns between Asset 1 and Asset 2. The Parameter: γ = 1, γM = 2, Rf = 1.02, N = 3, Θ = .5, χ = .3,

τx = 1.
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that an econometrician would expect when estimating a model of asset returns given their

common fundamentals. We also frame excess comovement in terms of excess correlation,

since varying parameters related to uncertainty in the model will affect the overall level of

risk in the market, and therefore the variances of asset prices.

As Panel (a) of Figure 7 illustrates, the correlation between the returns of Assets 1 and

2 can be higher than in the no information benchmark (χ = 0) when uncertainty, measured

by the inverse of the precision of the common prior about fundamentals τ−1
θ , is sufficiently

high. For low τθ, fund managers have a strong incentive to acquire information about the

fundamentals, which become ex-post correlated in beliefs after observing prices. The impact

of this correlation structure on asset prices through their trading can cause asset returns to

have a higher correlation than that implied by the correlation of their payoffs. As such, a

prediction of our model is that excess comovement among assets is likely to be higher in

periods of high aggregate uncertainty or among assets with higher uncertainty.

When altering the exogenous correlation of asset payoffs b in Panel (b), the learning
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channel also generates reasonable amount of excess correlation. This occurs because the

correlation structure of asset returns impacts the information that fund managers choose to

acquire, and this feeds back into prices through their portfolio decisions. Since managers

learn from prices, prices act as a coordination mechanism for both their information acqui-

sition and portfolio decisions. This can potentially amplify the correlation of asset returns

beyond the fundamental correlation of their asset payoffs, which is reflected in the no infor-

mation benchmark, through their trading. This suggests that generating excess comovement

relies on our endogenous learning channel.

5 Extensions

In this section, we discuss three extensions of our delegated learning channel. We first analyze

a setting in which fund managers can trade over multiple periods. We then investigate an

extension in which investors are endowed with nontradable background risk to their wealth

that is correlated with the asset fundamentals. Finally, we contrast our delegated learning

channel with another that is commonly explored in the literature in which managers are

endowed with heterogeneous skill, and investors learn about the skill of their manager over

time.

5.1 Trading over Multiple Periods

In this section, we discuss a dynamic extension of our model in which fund managers trade

over multiple periods. Further details of the model, its derivation, and a more thorough

discussion of the results are in the Internet Appendix A. In what follows, we describe the

salient features of the analysis.

We use the multi-period model to generalize several of our insights to a dynamic setting.

As is endemic to dynamic portfolio choice problems, the portfolio allocation decisions of

managers and direct investors not only reflect a speculative component based on the mean
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and variances of asset payoffs, but also an intertemporal hedging motive to insure against

future fluctuations in the payoff environment. Novel to our setting is that the effort choices

of fund managers are now also forward-looking. Whereas in the static setting, fund managers

seek to minimize the conditional variance of their portfolio excess payoff through their infor-

mation acquisition decision, in the dynamic setting managers take into account the benefits

of learning in early versus later periods for the same level of disutility from exerting effort.

Fund investors take into account these intertemporal incentives when choosing the optimal

affine contract to offer to fund managers.

An important point of departure of the multi-period model from its static counterpart

is the possibility that investors can observe a time series of fund manager performance

during the intermediate trading periods. In practice, the SEC N-Q and N-CSR filings,

which are publicly available, require large mutual funds to report all long positions held at

the end of a quarter. This potentially enables investors to improve their monitoring of fund

managers’ behavior. Based on the availability of the SEC N-Q and N-CSR filings for mutual

funds, we allow investors to observe an unbiased but noisy measure of their fund’s return

gap at each date t. This noise, which we assume is i.i.d. across assets and dates, can be

thought of as portfolio rebalancing driven by non-fundamental, non-informational reasons

or measurement error. Let Ri
t be this noisy observation. Given their observations of past

asset and fund-specific returns, investors can form their posterior beliefs about their fund

manager’s private information conditional on a given path of effort {et (i)}Ts=1 . They can

then derive a log-likelihood ratio under the null hypothesis that their manager exerts no

effort H0 : {et (i)}Ts=1 = {0N×1}Ts=1 , which corresponds to no exhibition of ability. We show

that the weighted historical variance of this return gap ST is related to the log-likelihood

ratio of the null hypothesis of no effort to an alternative hypothesis of some schedule of effort:

ST =
1

T

T∑
t=1

(
(Ri

t)
2

V arU [Ri
t | F ct ]

−
(
Ri
t − E

[
Ri
t | F It (i)

])2

V ar [Ri
t | F It (i)]

)
,
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and that it is a consistent estimator of whether or not the fund manager exhibits skills. While

Admati and Pfleiderer (1997) demonstrate that the first moment of benchmark-adjusted

returns is not sufficient to identify skill, our analysis suggests that, instead, investors should

focus on second moments when evaluating the skill of fund managers. In the above statistic,

V arU [Ri
t | F ct ] is the conditional variance of the return gap if the manager exerts no effort

to learn or has no skill, E
[
Ri
t | F It−1 (i)

]
is the best predictor of the return gap given all

public information available to investors, including current realized asset returns, and past

fund returns, and V ar
[
Ri
t | F It (i)

]
is the corresponding conditional variance.

If one believes that the value that fund managers add to asset management is their

acquisition of superior private information, then one should examine the variance of their

return gap over time, especially since first moments are highly path-dependent. Intuitively,

in any given trading period, fund managers may appear more or less active because of noise

in their information or time variation in expected returns: however, systematically their

portfolios should deviate from their more passive counterparts. This motivates examining

dynamic measures of skill, such as the empirical analogue of our ST statistic, to measure

fund manager skill in an active management.

While the ST statistic would allow for better monitoring of fund managers, since it could

relax their IC constraints, such asymmetric payoff provisions are prohibited by the SEC.

Though backward-looking as a measure, if investors allocate capital to funds based on the

historical ST statistic, then managers would face forward-looking incentives for effort to

achieve a higher ST statistic, and through this channel it would dynamically enter their

compensation. To see this, suppose that a new generation of investors at date T cannot

distinguish between delegating investors and direct investors, and allocates their capital to

funds in proportion to the signal that the fund manager has skill based on the fund’s returns,

according to the rule w (ST ):

w (ST ) = (ST − Scrit,α)W0,
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where
Scrit,α
σ0

= Φ−1 (1− α) is the α−level of confidence under the null hypothesis, and Φ (·)

is the CDF of the normal distribution. 25 Importantly, w (ST ) is increasing and convex in the

most recent fund return gap Ri
T through ST , leading to a short-term convex flow-performance

relation. In addition, if the compensation of fund managers is based on their final AUM at

date T, so that:

CS
T = ρ0 + ρS

(
W S
T −

(
Rf
)T
W0 + w (ST )

)
+ ρ′R

T∑
t=1

Rt,

which is still a symmetric performance contract, then the future flow-performance sensitivity

can incentivize forward-looking fund managers to exert effort before date t to raise their fund

flows at date T. Such a mechanism suggests that convex flow-performance sensitivity may

be a reaction to information about manager skill through this ST statistic, and nonlinear

flow-performance sensitivity could be a tool for completing the contracting space that is

restricted in direct compensation by the SEC to linear contracts.

5.2 Background Risk

In this section, we describe an extension of the model in which investors are endowed with

some exposure ψ to wealth correlated with the excess return of the asset fundamentals

that they cannot trade. This specification is meant to capture the idea that investors face

background risk that is correlated with asset market fluctuations.26 Specifically, we assume

that each investor’s final wealth is now given by:

wI2 = W i
2 − Ci

0 + ψ
(
Θ−RfF−1P + εI

)
,

25We assume implicitly that T is large enough that the asymptotic distribution is a reasonable approxi-
mation. Under the null hypothesis of no skill, or Rit ∼ iid

(
0, V arU

[
Rit | Fct

])
, ST has a normal asymptotic

distribution N
(
0, σ2

0

)
, where σ2

0 is the variance of ST when Rit is i.i.d.
26The assumption that investors are endowed with risk correlated with the excess return to the fundamen-

tals Θ−RfF−1P rather than the fundamentals directly is only for expositional convenience.
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where εI ∼ N
(
0, τ−1

I IdN
)

is independent of Θ and x, and across investors. One can inter-

pret εI as income risk that is specific to the investor or as idiosyncratic asset payoffs from

market incompleteness. For brevity, we only highlight the salient features that distinguish

the equilibrium from that in our baseline model, with further details available in the Internet

Appendix B.

The aggregate background risk of investors shifts equilibrium asset prices by a factor

− 1
Rf
F
(

χ
γMρS

Ω (j)−1 + 1−χ
γ

Ω−1
)−1

ψ, which reflects the aggregate hedging demand of in-

vestors, and modifies the benchmark for fund managers from ω0 to ωψ

ωψ = ω0 − ρS
ρS + γ

γM
(1− ρS)

F ′−1ψ′,

While direct investors will incorporate their background risk into their portfolio choice, in-

centives must be offered to fund managers to internalize this risk by choosing the appropriate

benchmark. This adjusted benchmark may also potentially impact the optimal sensitivity

of the fund managers’ performance-based compensation, ρS, and, through this delegated

learning channel, their incentives to acquire private information.27

Savov (2014) argues that active management can provide superior insurance to investors

against their aggregate income risk. Our analysis suggests that, in the presence of moral

hazards in delegation, fund managers internalize such risks through the benchmark against

which they are evaluated. Investors in our setting choose funds with benchmarks that reflect

their hedging needs. Our framework, consequently, offers insight into differences in bench-

marks across funds that invest in similar asset classes, as well as an additional dimension by

which the choice of benchmark adds value to investors. Investors in our setting choose funds

with benchmarks that reflect their hedging needs.

27This can be seen from the dependence of the FONC (A5) on ρR and Z̄.
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5.3 Learning about Assets vs. Learning about Fund Managers

Our framework explores how the skill of fund managers can be endogenous to both the

economic environment and their compensation contracts. In contrast to this mechanism, a

literature, which includes Berk and Green (2004), Pástor and Stambaugh (2012), Berk and

van Binsbergen (2015), Barber et al. (2016), and Starks and Sun (2016), investigates how

investors try to infer the persistent skill of active managers from past performance, given that

managers can influence this perception. Managers in these settings have incentives to signal

their skill because fund flows are sensitive to past performance, and their compensation is tied

to their fund’s AUM. As such, we view both channels as complementary to understanding

delegated asset management.

In practice, it is difficult to disentangle a fund manager’s intrinsic ability from the as-

sets in which it invests and the incentives that it faces. A manager whose compensation

is not performance-based, for instance, has little incentive to exert costly effort to provide

investors with superior performance even if it is capable. Similarly, a manager who invests in

assets with more volatile payoffs has more incentive to exert effort to gain an informational

advantage over other managers. While the capacity to garner superior returns may be a

trait inherent to active managers, the two aforementioned situations demonstrate that fund

manager skill, to some extent, must be an endogenous decision. Though studies such as

Starks and Sun (2016) do allow for the ability of fund managers to vary with the invest-

ment environment, our analysis suggests it is important to take into account that variation

in stock-picking and market-timing abilities may also reflect an optimal response to this

change in asset environment, and to changes in the incentives provided through compensa-

tion contracts.

In addition, while asymmetric information about assets and about fund manager ability

provides incentives for managers and investors to learn, respectively, their incentives to

learn are likely very different. Active managers can fully exploit their private information

in their investment decisions, while investors can only choose whether to invest in a fund.
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This limited ability for investors to act on negative news about managers suggests that the

expected return from exerting costly resources to learn is likely to be higher for managers

than for investors. In addition, since private information is imperfect, measures of skill

derived from a short history of the level of fund returns are likely to be noisy predictors of

future performance. As such, the learning process is likely to be slower for investors and

more dependent on publicly available information, such as realized past performance.

6 Conclusion

We study an economy in which investors delegate their investment in financial markets to

fund managers, and must incentivize fund managers to exert costly effort to acquire private

information about asset payoffs. This framework features an optimal affine contract that

has both performance-based and benchmarking incentives, and allows for the study of the

interaction between a manager’s incentives and its learning and trading decisions. We offer

novel predictions about intermediary asset holdings and asset prices that condition on the

asset environment rather than the contract or managers’ beliefs, which are easier to test

empirically. Our model cautions the use of existing empirical measures of skill employed in

the literature and offers a new measure theoretically motivated by a dynamic extension of

our framework.
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A Appendix

A.1 Equilibrium Asset Prices

Given the asset demand of direct investors and fund managers from equation (9) and Propo-

sition 1, respectively, we are now in a position to derive equilibrium prices. Aggregating

the demand of fund managers and direct investors, ωS1 (j) and ωD1 , respectively, the market-

clearing condition reveals that:

χ
1

γMρS
(FΩ (j)F ′)

−1

(
F

∫ 1

0

Θ̂ (j) di−RfP

)
−χ 1

ρS
ρR+(1− χ)

1

γ
(FΩF ′)

−1
(
F Θ̂−RfP

)
= x.

Substituting for Θ̂ and Θ̂ (j) with equations (5) and (7), respectively, and imposing the

Strong LLN, we find that:

P =

((
χ

γMρS
Ω (j)−1 +

1− χ
γ

Ω−1

)
RfF−1 −

(
1− χ
γ

+
χ

γMρS

)
τxΠ′θ

(
ΠxΠ′x

)−1
)−1

×((
1− χ
γ

+
χ

γMρS

)(
τθΘ̄− τxΠ′θ

(
ΠxΠ′x

)−1
(Π0+Πxx̄)

)
+

χ

γMρS
Σj (ej)

−1 Θ− F ′x− χ

ρS
F ′ρR

)
.

Matching coefficients with the conjectured form of prices (4), and the imposing equation

(6), we find that:

Ω−1 = τθIdN + τx

(
χ

γMρS

)2

Σj (ej)
−1 (F ′F )−1

Σj (ej)
−1 , (A1)

and that Πθ, Πx, and Π0 are given by:

Πθ =
1

Rf
F

 τθ

(
τx

(
χ

γMρS

)2
Σj (ej)

−1 (F ′F )−1 Σj (ej)
−1 +

(
1 + 1−χ

χ
γM
γ ρS

)−1
Σj (ej)

−1

)−1

+IdN


−1

(A2)

Πx = −γMρS
χ

ΠθΣj (ej)F
′ (A3)

Π0 =
1

Rf
F

(
χ

γMρS
Ω (j)−1 +

1− χ
γ

Ω−1

)−1
 (

1−χ
γ + χ

γMρS

) (
τθθ̄ − τxΠ′θΠ

′−1
x x̄

)
− χ
ρS
F ′ρR

 , (A4)

which confirms the conjectured linear equilibrium.

Several features of the equilibrium are immediately apparent from the price coefficients.
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We see, for instance, that if Σj (ej)
−1 is zero, so that fund managers have no private in-

formation, then Πθ,Πx → 0N×N , and prices reflect only prior information about the risky

asset payoffs. In addition, the signal-to-noise ratio of prices as signals about the risky as-

set payoffs, Π−1
x Πθ = − χ

γMρS
F ′−1Σj (ej)

−1 , depends not only on the correlation structure

of asset payoffs and the effort exerted by fund managers, but also negatively on their risk

aversion γM and the sensitivity of their compensation to the realized return of their fund,

ρS. That these latter two features enter as γMρS highlights that ρS makes the fund manager

effectively more risk-averse over his fund’s performance, and, as a result, more conservative

in his investment policies.

A.2 Expected Utility of Direct Investors

We calculate the expected utility of direct investors V D
0 . By the law of iterated expectations,

first conditioning on F c, the expected utility to direct investors V D
0 is then:

V D
0 = −E

[
exp

(
−γ
(
WD

2

))]
= −E

[
exp

(
−γRfW0 −

1

2
Z′Ω−1Z

)]
,

where Z = Θ̂−RfF−1P. From an ex-ante perspective, Z ∼ N (µ,ΩZ). With some manipu-

lation,

µ = Θ̄−RfF−1P̄,

ΩZ =

(
Ω−1 +

(
1 +

1− χ
χ

γM
γ
ρS

)
Ω−1Σj (ej) Ω−1

)−1

×

(
τ−1

Θ IdN − Ω
)−1
(

Ω−1 +

(
1 +

1− χ
χ

γM
γ
ρS

)
Ω−1Σj (ej) Ω−1

)−1

,

and P̄ = Π0 + ΠθΘ̄ + Πxx̄. Then, by competing the square,

V D
0 = −

exp
(
−γRfW0 − 1

2
µ′
(

Ω−1
Z − Ω−1

Z

(
Ω−1 + Ω−1

Z

)−1
Ω−1
Z

)
µ
)

|IdN + ΩZΩ−1|
.

A.3 Proof of Proposition 1

Assuming the linear contract, the IC constraint of the fund manager, conditional on an effort

choice e, reduces to the mean-variance optimization problem:

sup
ωS1 (j)

{
ρ0 + ρSω

S
1 (j)′

(
F Θ̂ (j)−RfP

)
+ρR

′
(
F Θ̂ (j)−RfP

)
−γM

2

(
ρSω

S
1 (j) + ρR

)′
FΩ (j)F ′

(
ρSω

S
1 (j) + ρR

) }
,
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given its CARA-normal structure. It then follows from the FOC for ωS1 at interior solution

that:

ωS1 (j) =
1

γMρS
(FΩ (j)F ′)

−1
(
F Θ̂ (j)−RfP

)
− 1

ρS
ρR.

Substituting this optimal portfolio choice into the manager’s utility, the IC constraint when

choosing effort level e becomes:

e ∈ argsupej∈RN+

E
− exp

 H (ej)− γMρ0

−1
2

(
Θ̂ (j)−RfF−1P

)′
Ω (j)−1

(
Θ̂ (j)−RfF−1P

)  .

To solve for the optimal level of effort for fund managers, we invoke the law of iterated

expectations and first find the expected utility of a fund manager conditional on having

observed market prices. The optimal choice of effort conditional on having observed market

prices is independent of the specific realization of prices. As a result, the optimal effort of fund

managers conditional on observing prices is also a measurable strategy for fund managers

before observing prices. Since unconditional strategies cannot improve on strategies that

condition on more information, this optimal effort ex-post must also be optimal ex-ante.

Recognizing that s (j) | F c0 ∼ N
(

Θ̂,Ω + Σj (ej)
)
, and that
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(
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)
,

where
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−1 ,

by completing the square for normal random variables, the expected utility of fund manager
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A similar result can be found by applying results for the moment-generating function of

the non-central chi-square random variables. As one can see, the optimal choice of effort

enters the conditional expected utility only through the −1
2

log
∣∣IdN + Σj (ej)

−1 Ω
∣∣ term.

Since fund managers are price-takers and the conditional variance of market beliefs Ω is

known ex-ante, we find that:

E

[
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= − exp
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The optimization program for the effort of fund manager is then equivalent to:

e ∈ argsupe′∈RN+

{
log
∣∣∣Ω−1 + Σj (e′)

−1
∣∣∣− h ((e′)′ 1N×1

)}
.

Recognizing that Σj (ej)
−1 = M · IdN + diag (e) , and invoking results of the matrix

calculus, the FOC for the optimal level of effort ei is:

Tr
[(

Ω−1 +M · IdN + diag (e)
)−1

Ji

]
− h′ (e′1N×1) ≤ 0 (= if ei > 0) .

where Ji is the N × N matrix with entry Jii = 1 and zero otherwise. Since Tr is a linear

operator, we can stack all the FOCs to arrive at:

Diag
[(

Ω−1 +M · IdN + diag (e)
)−1
]
− h′ (e′1N×1) 1N×1 ≤ 0N×1,

where Diag is the operator that stacks the diagonal of a matrix into a vector. Furthermore,

the second-order derivative of log
∣∣Ω−1 + Σj (e′)−1

∣∣ is:

∂2
eiei

log
∣∣∣Ω−1 + Σj (e′)

−1
∣∣∣ = −

(
Ω−1 +M · IdN + diag (e)

)−1
Ji
(
Ω−1 +M · IdN + diag (e)

)−1
.

Since h′ (·) is a (weakly) convex function, the optimization program is concave in e, and

therefore the FOC is both necessary and sufficient for the optimal e.
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If F is diagonal, so that asset payoffs are independent, then Ω−1 is also diagonal, and the

above condition reduces to:

1

Ω−1
ii +M + ei

≤ h′ (e′1N×1) ∀ i ∈ {1, ..., N} .

A.4 Proof of Proposition 2

Define

G = Tr
[
X−1Ji

]
− h′ (e′1N×1) = 0,

whereX =
(
(τθ +M) · IdN + k (M · IdN + diag (e)) (F ′F )−1 (M · IdN + diag (e)) + diag (e)

)
Jii,

and k = τx

(
χ

γMρS

)2

. By the implicit function theorem,

∂zei = − ∂zG
∂eiG

,

for parameter z. Recognizing that ∂ (X−1) = X−1 (∂X)X−1, taking the derivative under the

Tr operator since the Tr operator is linear and the trace is bounded, it follows that:

∂eiG = Tr [AJi] = v′iAvi − h′′ (e′1N×1) ,

where Ji is the N × N matrix with entry Jii = 1 and zero otherwise, vi is the Euclidian

N ×N basis vector in the ith direction, and

A = −X−1
(
k (M · IdN + diag (e))F−1F ′−1 + k (F ′F )

−1
(M · IdN + diag (e)) + IdN

)
X−1

−h′′ (e′1N×1) IdN .

Given that F is a lower triangular matrix with entries of 1 on the diagonal, F ′F is a positive

definite (PD) matrix since det(AB) = det(A) det(B). Since F ′F is a positive definite (PD)

matrix, it follows that (F ′F )−1 is a PD matrix, since the eigenvalues of (F ′F ) are the inverse

of the eigenvalues of F ′F. Since (F ′F )−1 is a PD matrix, X is also a PD matrix, and it follows

that A is a negative definite (ND) matrix. Therefore, it follows since vi has non-negative

entries and h (e′1N×1) is convex that:

∂eiG = v′iAvi − h′′ (e′1N×1) < 0.

Consequently,

∂zei =
∂zG

|∂eiG|
=
∂zTr [X−1]

|∂eiG|
,
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and the sign of ∂ei
∂z

is the same as the sign of ∂zTr [X−1] . Differentiating under the Tr

operator again, it follows that:

∂zG = −Tr
[
X−1∂z

(
(τθ +M) · IdN + k (M · IdN + diag (e)) (F ′F )

−1
(M · IdN + diag (e))

)
X−1Ji

]
.

For z = τθ, it is straightforward to verify that ∂τθG > 0, since Tr [X−1τθX
−1Ji] = τθTr [X−1X−1Ji]

and X is PD, and therefore:

∂τθei < 0.

Similarly, it follows that:

∂kei < 0.

The results for elements of k then follow by the chain rule.

A.5 Proof of Proposition 3

Substituting for W S
2 and CS

0 , the utility of investors that invest with fund managers is

V
(
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2 , C
S
0

)
= − exp

−γ
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)
− ρR′F
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)

 .

Importantly, ej is independent of the realization of Θ. To find expected investor utility

when investing with fund managers, we recognize by the law of iterated expectations that

E
[
V
(
W S

2 , C
S
0

)]
= E

[
E
[
V
(
W S

2 , C
S
0
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| F c

]]
, and that E
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(
W S

2 , C
S
0

)
| F c

]
= E

[
E
[
V
(
W S

2 , C
S
0

)
| Θ, x

]
| F c

]
.

Taking conditional expectations with respect to the realized shocks, and integrating over the

idiosyncratic signal noise of fund managers, we find:

E
[
V
(
WS

2 , C
S
0

)
| Θ, x

]
= − exp

−γ
 RfW0 − ρ0 +

(
1
2

(
1−ρS
γMρS

)2
+ 1−ρS

γMρS

)(
Θ− Θ̂

)′
Σj (ej)

−1 (Θ−RfF−1P
)

+ 1
ρS

(
1−ρS
γM

(
Θ̂−RfF−1P

)′ (
Ω−1 +

(
1 + 1

2
1−ρS
γMρS

)
Σj (ej)

−1
)
− ρR′F

)(
Θ−RfF−1P

)

 .
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Taking conditional expectations with respect to the market beliefs, we then arrive at:

E
[
V
(
WS

2 , C
S
0

)
| Fc

]

= −

exp


γρ0 − γRfW0 − 1

2Z′Ω−1Z

+1
2

((
1 + γ

γM

1−ρS
ρS

)
Ω−1Z− γ

ρS
F ′ρR

)′(
Ω−1 +

(
1−

(
1− γ

γM

1−ρS
ρS

)2
)

Σj (ej)
−1

)−1

×((
1 + γ

γM

1−ρS
ρS

)
Ω−1Z− γ

ρS
F ′ρR

)


∣∣∣∣IdN +

(
1−

(
1− γ

γM

1−ρS
ρS

)2
)

ΩΣj (ej)
−1

∣∣∣∣1/2
,

where Z = Θ̂−RfF−1P. From an ex ante perspective, Z ∼ N (µ,ΩZ) . Taking unconditional

expectations, we arrive at:

E
[
V
(
WS

2 , C
S
0

)]

= −

exp

 −γRfW0 + 1
2

(
γ
ρS

)2
ρR
′F

(
Ω−1 +

(
1−

(
1− γ

γM

1−ρS
ρS

)2
)

Σj (ej)
−1

)−1

F ′ρR

+1
2G
′H−1G− 1

2µ
′Ω−1
Z µ+γρ0


∣∣∣∣IdN +

(
1−

(
1− γ

γM

1−ρS
ρS

)2
)

ΩΣj (ej)
−1

∣∣∣∣1/2 |ΩZH|1/2
,

where

G =
γ

ρS

(
1 +

γ

γM

1− ρS
ρS

)(
IdN +

(
1−

(
1− γ

γM

1− ρS
ρS

)2
)

Σj (ej)
−1 Ω

)−1

F ′ρR + Ω−1
Z µ,

H = Ω−1 + Ω−1
Z −

(
1 +

γ

γM

1− ρS
ρS

)2

Ω−1

(
Ω−1 +

(
1−

(
1− γ

γM

1− ρS
ρS

)2
)

Σj (ej)
−1

)−1

Ω−1.

Investors in fund managers are used to solve the optimization problem:

V S
0 = sup

{ρ0,ρS ,ρR}
E
[
V
(
W S

2 , C
S
0

)]
s.t. : E

[
V
(
W S

2 , C
S
0

)]
= V D

0 ( indifference) ,

: Tr
[(

Ω−1 +M · IdN + diag (ej)
)−1

Ji

]
− h′

(
e′j1N×1

)
≤ 0 ∀ i ∈ {1, ..., N} (optimal ej) .

Importantly, V D
0 and the FOC for the optimal choice of fund manager effort are independent

of the contract from the perspective of investors.
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The FOC for ρR can be solved explicitly for ρR such that:

ρR = −
(
ρS
γ

+
1− ρS
γM

)
F ′−1

×

(1 +
γ

γM

1− ρS
ρS

)2

Ω−1H−1Ω−1

(
Ω−1 +

(
1−

(
1− γ

γM

1− ρS
ρS

)2
)

Σj (ej)
−1

)−1

+ IdN

−1

×Ω−1H−1Ω−1
Z µ,

which, with some manipulation, simplifies to:

ρR = −
(
ρS
γ

+
1− ρS
γM

)
F ′−1 (ΩZ + Ω)−1 µ.

Recognizing that we can rewrite F ′−1 (ΩZ + Ω)−1 µ as (F ′ (ΩZ + Ω)F )−1 Fµ, where Fµ is

the unconditional expected excess return on the risky assets, it follows that F ′−1 (ΩZ + Ω)−1 µ

is a portfolio allocation chosen before prices are observed that accounts for both the overall

uncertainty of excess returns and the uncertainty given common prices Ω augmented by the

uncertainty over the realization of prices ΩZ .

Defining ω0 = 1
γ
F ′−1 (ΩZ + Ω)−1 µ to represent this “naive” portfolio, we can express ρR

as:

ρR = −
(
ρS +

γ

γM
(1− ρS)

)
ω0.

Furthermore, by the law of total variance:

V ar
(
Θ−RfF−1P

)
= E

[
V ar

(
Θ−RfF−1P | F c

)]
+ V ar

(
E
[
Θ−RfF−1P | F c

])
= E [Ω] + V ar

(
Θ̂−RfF−1P

)
= Ω + ΩZ .

Therefore, ω0 can be expressed as:

ω0 =
1

γ
F ′−1V ar

(
Θ−RfF−1P

)−1
E
[
Θ−RfF−1P

]
,

which is the ex-ante mean-variance efficient portfolio.

Since ρ0 impacts V S
0 only through the eγρ0 term, we can define vS, where:

V S
0 = eγρ0vS,
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and vS is independent of ρ0 from the perspective of delegated investors. Since the expected

utility of direct investors V D
0 is independent of ρ0 from the perspective of investors, from the

indifference condition it follows that:

ρ0 =
1

γ
log

V D
0

vS
.

Assuming the program for the investor is concave in ρU and ρS, the optimal choices of ρS

satisfies:

ρS = arg sup
ρS


−1

2

(
γ
ρS

)2
ρR
′F

(
Ω−1 +

(
1−

(
1− γ

γM

1−ρS
ρS

)2
)

Σj (ej)
−1

)−1

F ′ρR

+1
2 log

∣∣∣∣IdN +

(
1−

(
1− γ

γM

1−ρS
ρS

)2
)

ΩΣj (ej)
−1

∣∣∣∣+ 1
2 log |H| − 1

2G
′H−1G

 .

Applying matrix calculus, we derive the FONC for the optimal choice of ρS:

0 =



1
ρS

(
γ
ρS

)2

ρR
′FAF ′ρR

−
(

1− γ
γM

1−ρS
ρS

)
γ
γM

(
γ
ρ2S

)2

Tr
[
AF ′ρRρR

′FAΣj (ej)
−1
]

+
1− γ

γM

1−ρS
ρS

1−
(

1− γ
γM

1−ρS
ρS

)2
γ

γMρ2S

N − Tr

[((
1−
(

1− γ
γM

1−ρS
ρS

)2
)−1

IdN+ΩΣj(ej)
−1

)−1

IdN

]
1−
(

1− γ
γM

1−ρS
ρS

)2


′

+Tr

[
γ
γM

1
ρ2S

(
1 + γ

γM

1−ρS
ρS

)
H−1Ω−1AΩ−1

(
IdN −

(
1−

(
γ
γM

1−ρS
ρS

)2
)

ΩΣj (ej)
−1
AΩ−1

)]
+
γ
(

1+ γ
γM

1−ρS
ρS

)
γMρ2S

Tr

[
H−1GG′H−1Ω−1AΩ−1

(
IdN −

(
1−

(
γ
γM

1−ρS
ρS

)2
)

ΩΣj (ej)
−1
AΩ−1

)]

+Tr

F ′ρRG′H−1

 γ
ρ2S

1+ γ
γM

2−ρS
ρS
−2 γ

γM

1
ρS

1−
(
γ
γM

1−ρS
ρS

)2
1−
(
1− γ

γM

1−ρS
ρS

)2
1−
(

1− γ
γM

1−ρS
ρS

)2 B + 2 γ
ρ3S

γ
γM

1−
(

γ
γM

1−ρS
ρS

)2(
1−
(

1− γ
γM

1−ρS
ρS

)2
)3BB






,

(A5)

where:

A =

(
Ω−1 +

(
1−

(
1− γ

γM

1− ρS
ρS

)2
)

Σj (ej)
−1

)−1

,

B =

(1−
(

1− γ

γM

1− ρS
ρS

)2
)−1

IdN + Σj (ej)
−1 Ω

−1

.
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A.6 Proof of Proposition 4

Given the functional form of the price P, and that it is publicly observed, we can decompose

it as:

Π−1
θ (P−Π0) = Θ− γMρS

χ
Σj (ej)F

′x = Θ̂− γMρS
χ

Σj (ej)F
′x̂,

from which it follows that

Θ− Θ̂ =
γMρS
χ

Σj (ej)F
′ (x− x̂) , (A6)

where we have substituted for Π−1
θ Πx with our expression in the main text, Πθ = −Πx

χ
γMρS

F ′−1Σj (ej)
−1 .

It follows that beliefs across Θ̂ are correlated, and the innovations to the supply shocks x̂−x

are entangled by the payoff matrix F ′. Notice that the first row of F ′ is the vector of asset

b′s, and F ′ is the bordered identity matrix IdN−1 for rows 2 to N.

Substituting with the system of equations (A6), and recognizing that Kii (eij) = M + eij,

we obtain:

θ1 − θ̂1 =
γMρS
χ

N∑
i=2

Kii (eij)
−1 bi (xi − x̂i) =

γMρS
χ

K11 (e1j)
−1 (x1 − x̂1) +

N−1∑
i=1

bi

(
θi − θ̂i

)
,

with the understanding that b1 = 1. It then follows that if the market overestimates θi, θi <

θ̂i, i ∈ [2, 3, ...N ], that it marginally overestimates the aggregate risk θ1 if bi ≥ 0, θ1 < θ̂1.

Consequently, it follows that:

biCov (θi, θ1 | F c) ≥ 0 ∀ i ∈ {2, ..., N} .

Therefore, if the market overestimates the asset-specific payoff to asset i, it will also overes-

timate the aggregate fundamental θ1, all else equal and all other prices held constant.

Next we fix the market’s perception of the aggregate risk θ̂1. A positive shift in the

perception of asset-specific payoff to asset i, θi− θ̂i, i ∈ [2, 3, ...N ], must be offset by a shift in

the perception of the remaining asset-specific asset payoffs
∑N

2,j 6=i
bj
bi

(
θj − θ̂j

)
to hold fixed

the perception of aggregate risk θ̂1. It then follows that:

bibjCov
(
θ̂i, θ̂j | F c

)
≤ 0 ∀ (i, j) i 6= j.
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