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1. Introduction

How liquid is a portfolio of securities? The literature presents a variety of liquidity measures

for individual securities, but it offers little guidance for assessing liquidity at the portfolio

level. We introduce the concept of portfolio liquidity and implement it both theoretically

and empirically.

A portfolio is more liquid if it has lower trading costs. More precisely, if two equally

sized funds trade the same fraction of their portfolios, the fund with lower trading costs has

greater portfolio liquidity. When assessing portfolio liquidity, it seems natural to begin with

the average liquidity of the portfolio’s constituents. For example, portfolios of small-cap

stocks tend to be less liquid than portfolios of large-cap stocks. While this assessment is

a useful starting point, it is incomplete. We argue that a portfolio’s liquidity depends not

only on the liquidity of the stocks held in the portfolio, but also on the degree to which the

portfolio is diversified:

Portfolio Liquidity = Stock Liquidity× Diversification . (1)

The more diversified a portfolio, the less costly is trading a given fraction of it. For example,

a fund trading just 1 stock will incur higher costs than a fund spreading the same dollar

amount of trading over 100 stocks, even if all of the stocks are equally liquid. Throughout,

we focus on equity portfolios, but our ideas are more general.

Starting from a simple trading cost function, we derive a measure of portfolio liquid-

ity that is easy to calculate from the portfolio’s composition. Following equation (1), our

measure has two components. The first, stock liquidity, reflects the average market cap-

italization of the portfolio’s holdings. The second component, diversification, has its own

intuitive decomposition:

Diversification = Coverage ×Balance . (2)

Coverage reflects the number of stocks in the portfolio. Portfolios holding more stocks have

greater coverage. Balance reflects how the portfolio weights the stocks it holds. Portfolios

with weights closer to market-cap weights have greater balance.

Diversification’s role in portfolio liquidity is important empirically. We compute our

measures of portfolio liquidity and diversification for the portfolios of 2,789 active U.S.

equity mutual funds from 1979 through 2014. We find that fund portfolios have become

more liquid over time. Average portfolio liquidity almost doubled over the sample period,

driven by diversification. Diversification quadrupled, as both of its components in equation
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(2) rose steadily. Coverage rose because the number of stocks held by the average fund

grew from 54 to 126. Balance rose because funds’ portfolio weights increasingly resembled

market-cap weights.1

Diversification’s role in portfolio liquidity goes beyond its strong time trend. We show

that diversification is an important cross-sectional determinant of mutual fund portfolio

liquidity. Moreover, diversification explains why the typical active fund’s portfolio is far less

liquid than passive benchmark portfolios. The typical fund actually tilts toward stocks of

above-average size, but that positive effect on portfolio liquidity is more than offset by the

relatively low diversification inherent to active management. The 126 stocks held by the

average active fund in 2014 cover only a small fraction of available stocks.

We develop an equilibrium model relating portfolio liquidity to three other fund charac-

teristics: fund size, expense ratio, and turnover. In the model, funds face decreasing returns

to scale. When choosing their portfolio liquidity and turnover, funds recognize that lower

liquidity and higher turnover raise expected gross profits but also raise transaction costs.

Investors allocate money to funds up to the point at which each fund’s net alpha is driven

to 0. This equilibrium determination of fund size follows Berk and Green (2004).

The model implies that funds whose portfolios are less liquid should have smaller size,

higher expense ratios, and lower turnover. This equilibrium relation provides a novel theo-

retical link between the four key mutual fund characteristics. Intuitively, if a fund trades a

lot or holds an illiquid portfolio, diseconomies of scale force the fund to be small. The role of

the expense ratio involves the fund’s skill. A more skilled fund can afford to charge a higher

fee and to trade a less liquid portfolio.

The equilibrium relation among fund characteristics delivers a regression of portfolio

liquidity on fund size, expense ratio, and turnover. We estimate this cross-sectional regression

in our panel dataset and find strong support for the model. All three slopes have their

predicted signs and are highly significant, both economically and statistically, with t-statistics

ranging from 4.9 to 13.8. Funds with less liquid portfolios indeed tend to be smaller, more

expensive, and trade less, as the model predicts.

The model also makes strong predictions about diversification. In equilibrium, funds

with more diversified portfolios should be larger and cheaper, they should trade more, and

their stock holdings should be less liquid. We find strong empirical support for all four

predictions. The negative relation between diversification and stock liquidity suggests that

1The increased resemblance of active funds’ portfolios to the market benchmark is also apparent from
measures such as active share and tracking error (e.g., Cremers and Petajisto, 2009, and Stambaugh, 2014).
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these components of portfolio liquidity are substitutes: funds holding less liquid stocks tend

to diversify more, and vice versa. The components of diversification, coverage and balance,

are also substitutes: portfolios with lower coverage tend to be better balanced, and vice

versa. Both substitution effects are predicted by our model.

Our model also makes predictions for correlations among fund characteristics. First,

larger funds should be cheaper. In the data, the correlation between fund size and expense

ratio is indeed strongly negative, both in the cross section (−32%) and in the time series

(−25%). In our model, a fund’s skill uniquely determines its fee revenue, so fund size and

expense ratio trade off negatively as long as skill does not vary too much. The model also

predicts that fund turnover should be negatively related to fund size and positively related

to expense ratio. These relations hold strongly in the data as well: funds that trade less are

larger and cheaper, both across funds and over time.

Finally, we extend our model by allowing fund size to deviate from its equilibrium value.

Guided by our model, we estimate excess fund size as the residual from the regression of

portfolio liquidity on fund size, expense ratio, and turnover. We find that excess fund size

gets corrected over time, yet it is highly persistent.

The model also predicts that excess fund size should be negatively related to future fund

performance, due to diseconomies of scale. We find empirical support for this prediction in

two ways. First, in panel regressions of benchmark-adjusted fund returns on lagged excess

fund size, we find negative and significant slopes at all return horizons up to four years.

Second, in portfolio sorts on lagged excess fund size, average benchmark-adjusted returns

decrease monotonically across the portfolios. Moreover, the negative relation between excess

fund size and future performance is stronger for more expensive funds, as the model predicts.

Among high-expense-ratio funds, high-excess-size funds underperform low-excess-size funds

by 1.3% per year (t = −2.47) on a benchmark-adjusted basis. This out-of-sample analysis

provides additional support for the model.

Our study relates to the literature on decreasing returns to scale in active management.

This literature explores the hypothesis that as a fund’s size increases, its ability to out-

perform its benchmark declines (Berk and Green, 2004).2 This hypothesis is motivated by

liquidity constraints: Being larger erodes performance because a larger fund trades larger

dollar amounts, and trading larger dollar amounts incurs higher proportional trading costs.

2This is the hypothesis of fund-level decreasing returns to scale. A complementary hypothesis of industry-
level decreasing returns to scale is that as the size of the active mutual fund industry increases, the ability
of any given fund to outperform declines (see Pástor and Stambaugh, 2012, and Pástor, Stambaugh, and
Taylor, 2015). In this paper, we focus on the fund-level hypothesis.
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The hypothesis has received a fair amount of empirical support. Fund size negatively pre-

dicts fund performance, especially among funds holding small-cap stocks (Chen et al., 2004)

and less liquid stocks (Yan, 2008), suggesting that the adverse effects of scale are related to

liquidity.3 We establish the same link from a different angle. We find that larger funds tend

to have higher portfolio liquidity and lower turnover. This evidence is in line with our model,

in which diseconomies of scale lead larger funds to optimally hold more-liquid portfolios and

trade less. For a fund to be larger, it must trade less or hold a more liquid portfolio, either

by holding more-liquid stocks or by diversifying. Our results represent strong evidence of

decreasing returns to scale. It is not clear what other mechanism could explain why larger

funds trade less and hold more-liquid portfolios.

Two other studies provide related evidence on returns to scale. Pollet and Wilson (2008)

find that mutual funds respond to asset growth mostly by scaling up existing holdings rather

than by increasing the number of stocks held. But the authors also find that larger funds

and small-cap funds are less reluctant to diversify in response to growth, exactly as our

theory predicts. In their comprehensive analysis of mutual fund trading costs, Busse et al.

(2017) report that larger funds trade less and hold more-liquid stocks. This evidence, which

overlaps with our findings, also supports our model. In the language of equation (1), Busse

et al. show that larger funds have higher stock liquidity; we show they also have higher

diversification. The evidence of Busse et al. is based on a sample much smaller than ours

(583 funds in 1999 through 2011), dictated by their focus on trading costs. Neither Busse et

al. nor Pollet and Wilson do any theoretical analysis.

Our study is also related to the literature on portfolio diversification. We propose a

new measure of diversification that has strong theoretical motivation. Our measure exhibits

features of two common ad-hoc measures: the number of stocks held and the Herfindahl

index of portfolio weights. By using our measure, we show that mutual funds have become

substantially more diversified over time. Nevertheless, we find that the funds remain not well

diversified.4 We also derive theoretical predictions for the determinants of diversification.

Funds with more-diversified portfolios should be larger and cheaper, they should trade more,

and their holdings should be less liquid, on average. We find strong empirical support for

all of these predictions.

While we relate mutual funds’ portfolio choices to fund characteristics, other studies

3For additional evidence on returns to scale in mutual funds, see Bris et al. (2007), Pollet and Wilson
(2008), Reuter and Zitzewitz (2015), Pástor, Stambaugh, and Taylor (2015), Harvey and Liu (2017), etc.

4Low diversification by institutional investors is also reported by Kacperczyk, Sialm, and Zheng (2005),
Pollet and Wilson (2008), and others. Household portfolios also exhibit low diversification, as shown by
Blume and Friend (1975), Polkovnichenko (2005), Goetzmann and Kumar (2008), and others.
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relate them to stock characteristics. Falkenstein (1996) shows that mutual funds have a

significant preference for liquid stocks with high visibility. Gompers and Metrick (2001) find

that institutions prefer large, liquid stocks with low past returns. Koijen and Yogo (2016)

model institutions’ portfolio weights as a function of stock characteristics. In addition, they

find that the price impact of institutional trades decreases from 1980 to 2014, consistent

with our evidence that fund portfolios become more liquid over the same period.

The rest of the paper is organized as follows. Section 2 introduces our measures of

portfolio liquidity and diversification. Section 3 relates these measures to fund size, expense

ratio, and turnover. Section 4 examines correlations among fund characteristics. Section 5

analyzes the predictability of fund performance by excess fund size. Section 6 concludes.

Formal proofs of all assertions are in Appendix A. Additional empirical results are in the

Internet Appendix, which is available on the authors’ websites.

2. Portfolio Liquidity and Its Components

We begin this section by deriving our measure of portfolio liquidity. We then examine the key

properties of this measure, including its decomposition into stock liquidity and diversification.

We go on to discuss our measure of diversification. Finally, we examine the time series and

cross section of portfolio liquidity and its components in our mutual fund sample.

2.1. Introducing Portfolio Liquidity

The definition of portfolio liquidity is based on trading costs: If two equally sized funds trade

the same fraction of their portfolios, the fund incurring lower costs has greater portfolio

liquidity. We show that this fundamental concept is captured by the following measure:

L =

(
N∑

i=1

w2
i

mi

)−1

, (3)

where N is the number of stocks in the portfolio, wi is the portfolio’s weight on stock i, and

mi denotes the weight on stock i in a market-cap-weighted benchmark portfolio containing

NM stocks. The latter portfolio can be the overall market, the most familiar benchmark, or

it can be the portfolio of all stocks in the sector in which the fund trades, such as large-cap

growth. We apply both choices in our empirical analysis.
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To derive this measure, we begin with the fund’s total dollar trading costs, given by

C =
N∑

i=1

Di Ci , (4)

where Di is the dollar amount traded of stock i and Ci is the cost per dollar traded of

the same stock. We assume that the cost per dollar traded is larger when trading a larger

fraction of the stock’s market capitalization:

Ci = c̃
Di

Mi
, (5)

where Mi is the market capitalization of stock i and c̃ > 0. Equation (5) reflects the

basic idea that larger trades have higher proportional trading costs, such as price impact.

Empirical support for this idea is extensive (e.g., Keim and Madhavan, 1997). The linearity

of equation (5) implies that trading, say, 1% of a stock’s market capitalization costs twice as

much per dollar traded compared to trading 0.5% of the stock’s capitalization.5 The total

dollar amount traded by the fund is the product of the fund’s assets under management

(AUM), A, and the fund’s turnover, T . We assume that the fund expects to turn over its

portfolio proportionately, trading larger dollar amounts of stocks that occupy bigger shares

of the portfolio. Specifically, the amount traded in stock i obeys

Di = ATwi(1 + εi) , (6)

where εi has a mean of 0 and variance of σ2
ε . That is, the expected dollar amount traded

in stock i is E(Di) = ATwi, but the actual amount traded can differ from this expectation.

Denoting the total market capitalization of all stocks in the benchmark portfolio by M , we

have mi = Mi/M . Combining equations (4) through (6), we can write the fund’s expected

proportional trading cost as

E
(

C

A

)

=
(

A

M

)

T 2c

(
N∑

i=1

w2
i

mi

)

︸ ︷︷ ︸

L−1

, (7)

where c = (1 + σ2
ε)c̃. Equation (7) links portfolio liquidity from equation (3) to the fund’s

trading cost function: less liquid portfolios have higher expected proportional trading costs.

Trading costs are also higher for larger funds and funds that trade more, indicating decreasing

returns to scale.

5A linear function for the proportional trading cost in a given stock is entertained, for example, by Kyle
and Obizhaeva (2016). That study examines portfolio transition trades and concludes that a linear function
fits the data only slightly less well than a nonlinear square-root specification. We generalize the simplifying
assumption of linearity in Appendix B.
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The right-hand side of equation (7) includes the ratio A/M . For the most familiar

benchmark choice, the overall market, a fund’s size thus enters as its AUM divided by the

value of the total stock market. Therefore, we define a fund’s size as this scaled quantity

in our empirical analysis. We maintain this measure of size without loss of generality when

using other benchmarks. With another benchmark, when still dividing A by total stock

market value, equation (7) includes an additional multiplicative constant, which equals the

ratio of total value of all stocks in the market to that of all stocks in the benchmark. As we

explain later, this constant simply becomes a part of the benchmark-specific fixed effect in

the regression implied by our model.

2.2. Properties of Portfolio Liquidity

Our measure of portfolio liquidity (L) from equation (3) exhibits several desirable properties.

First, the measure is derived theoretically under plausible assumptions about the trading cost

function. Second, the measure always takes values between 0 and 1.

The least liquid portfolio is fully invested in a single stock: the one with the smallest

market capitalization among stocks in the benchmark. The liquidity of this portfolio is equal

to the benchmark’s market-cap weight on that smallest stock, so L can be nearly 0.

A portfolio can be no more liquid than its benchmark, for which L = 1. This statement

is proven in Appendix A, but its simple intuition follows from the trading-cost assumption

in equation (5). When trading a given dollar amount of the benchmark portfolio, which has

market-cap weights, the proportional cost of trading each stock is equal across stocks. With

this cost denoted by κ, the proportional cost of the overall trade is also κ. If the benchmark

portfolio is perturbed by buying one stock and selling another, then more weight is put on

a stock whose proportional cost is now greater than κ, and less weight is put on a stock

whose proportional cost is now smaller than κ. Therefore, the proportional cost of trading

the same dollar amount of this alternative portfolio exceeds κ.

Portfolio liquidity from equation (3) can be decomposed as

L =
1

N

N∑

i=1

Li

︸ ︷︷ ︸

Stock Liquidity

×
(

N

NM

) [

1 + Var∗
(

wi

m∗
i

)]−1

︸ ︷︷ ︸

Diversification

, (8)

We discuss the second component, “diversification,” in the following subsection. The first

component, “stock liquidity,” is the equal-weighted average of Li = Mi/M , with M denoting

the average market capitalization of stocks in the benchmark: M = 1

NM

∑NM

j=1 Mj. Variable
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Li captures the liquidity of stock i relative to all stocks in the benchmark. Stock liquidity

is larger (smaller) than 1 if the portfolio’s holdings have a larger (smaller) average market

capitalization than the average stock in the benchmark. A stock’s market capitalization is

thus implicitly used to measure liquidity at the stock level. This result follows from our

assumption (5), which implies that trading $1 of stock i incurs a cost proportional to 1/mi.

This is intuitive—trading a fixed dollar amount of a small-cap stock (whose mi is small)

incurs a larger price impact than trading the same amount of a large-cap stock (whose mi

is large).6

2.3. Portfolio Diversification

A portfolio’s liquidity depends not only on the liquidity of the portfolio’s constituents but

also on the extent to which the portfolio is diversified. Better-diversified portfolios are more

liquid because they incur lower trading costs compared to more concentrated portfolios with

the same turnover. Diversification is an essential part of portfolio liquidity (equation (8)),

which is a key determinant of trading costs (equation (7)).

Diversification is a foundational concept in finance, yet there is no accepted standard

for measuring it. In an important early contribution, Blume and Friend (1975) use two

measures. The first one is the number of stocks in the portfolio. This measure is also

used by Goetzmann and Kumar (2008), Ivkovich, Sialm, and Weisbenner (2008), Pollet

and Wilson (2008), and others. The idea is that portfolios holding more stocks are better

diversified. While this idea is sound, the measure is far from perfect. Consider two portfolios

holding the same set of 500 stocks. The first portfolio weights the stocks in proportion to

their market capitalization. The second portfolio is 99.9% invested in a single stock while

the remaining 0.1% is spread across the remaining 499 stocks. Even though both portfolios

hold the same number of stocks, the first portfolio is clearly better diversified.

The second measure of diversification used by Blume and Friend is the sum of squared

deviations of portfolio weights from market weights, essentially a market-adjusted Herfindahl

index. The Herfindahl index measures portfolio concentration, the inverse of diversification.

Studies that use various versions of this measure include Kacperczyk, Sialm, and Zheng

(2005), Goetzmann and Kumar (2008), and Cremers and Petajisto (2009), among others.

6Market capitalization is also closely related to other measures of stock liquidity. For example, we calculate
the correlations between the log of market capitalization and the logs of two popular measures, the Amihud
(2002) measure of illiquidity and dollar volume, across all common stocks. The two correlations average
-0.91 and 0.85, respectively, across all months in our sample period.
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Our measure of portfolio diversification, which we derive formally from the trading cost

function, blends the ideas from both of the above measures. As one can see from equation

(8), our measure can be further decomposed as

Diversification =
(

N

NM

)

︸ ︷︷ ︸

Coverage

×

[

1 + Var∗
(

wi

m∗
i

)]−1

︸ ︷︷ ︸

Balance

. (9)

The first component of diversification, “coverage,” is the number of stocks in the portfolio

(N) divided by the total number of stocks in the benchmark (NM) . Dividing by the latter

number makes sense. If all firms in the benchmark were to merge into one big conglomerate, a

portfolio holding only the conglomerate’s stock would be perfectly diversified despite holding

only a single stock. Given NM , portfolios holding more stocks have larger coverage. The

value of coverage is always between 0 and 1, with the maximum value reached if the portfolio

holds every stock in the benchmark.

The second component, “balance,” measures how diversified the portfolio is across its

holdings, regardless of their number. A portfolio is highly balanced if its weights are close

to market-cap weights. The degree to which a portfolio’s weights are close to market-cap

weights is captured by the term Var∗ (wi/m
∗
i ), which is the variance of wi/m

∗
i with respect

to the probability measure defined by scaled market-cap weights m∗
i = mi/

∑N
i=1 mi, so

that
∑N

i=1
m∗

i = 1.7 If portfolio weights equal market-cap weights, so wi/m
∗
i = 1, then

Var∗(wi/m
∗
i ) = 0 and balance equals 1. Like coverage, balance is always between 0 and 1.

Equation (9) shows that a portfolio is well diversified if it holds a large fraction of the

benchmark’s stocks and if its weights are close to market-cap weights. Given the ranges of

coverage and balance, diversification is always between 0 and 1. The benchmark portfolio

has coverage and balance both equal to 1.

Our measure of portfolio diversification is easy to calculate from equation (9). A simple

two-step approach is available to those wishing to circumvent the calculation of variance

with respect to the m∗ probability measure. One can simply compute L from equation (3)

and then divide it by stock liquidity, following equation (8).

7Note that
∑NM

i=1
mi = 1, but

∑N

i=1
mi ≤ 1, because N ≤ NM . Var∗ (.) can be easily computed using the

expression Var∗ (wi/m∗

i ) =
∑N

i=1
w2

i /m∗

i − 1. Details are in Appendix A.
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2.4. Empirical Evidence

We compute our measures of portfolio liquidity and diversification for a sample of 2,789

actively managed U.S. domestic equity mutual funds covering the 1979–2014 period. To

construct this sample, we begin with the dataset constructed by Pástor, Stambaugh, and

Taylor (2015, 2017), which combines data from the Center for Research in Securities Prices

(CRSP) and Morningstar. We add three years of data and merge this dataset with the

Thomson Reuters dataset of fund holdings. We restrict the sample to fund-month observa-

tions whose Morningstar category falls within the traditional 3×3 style box (small-cap/mid-

cap/large-cap interacted with growth/blend/value). This restriction excludes non-equity

funds, international funds, and industry-sector funds. We also exclude index funds, funds

of funds, and funds smaller than $15 million. A more detailed description of our sample,

including the variable definitions and their summary statistics, is in Appendix C.

For each fund and quarter-end, we compute portfolio liquidity from the fund’s quarterly

holdings data. Initially, we compute portfolio liquidity relative to the market portfolio.

Our definition of the market portfolio is guided by the end-of-sample holdings of the world’s

largest mutual fund, Vanguard’s Total Stock Market Index fund. This fund tracks the CRSP

US Total Market Index, which is designed to track the entire U.S. equity market. We find

that 98.9% of the fund’s holdings are either ordinary common shares (CRSP share code,

shrcd, with first digit equal to 1) or REIT shares of beneficial interest (shrcd = 48). We

therefore define the market as all CRSP securities with these share codes. This definition

includes foreign-incorporated firms (shrcd = 12), many of which are deemed domestic by

CRSP (they make up 1.4% of the Vanguard fund’s holdings), but it excludes securities such

as ADRs (shrcd = 31) and units or limited partnerships (shrcd first digit equal to 7).

When computing mutual funds’ portfolio liquidity, we exclude all fund holdings that are not

included in the above definition of the market portfolio. For the median fund/quarter in our

sample, 2.3% of holding names and 1.9% of holding dollars are outside the market.

2.4.1. Time Series

Panel A of Figure 1 plots the time series of the cross-sectional means of portfolio liquidity,

L, across all funds. The figure offers two main observations. First, fund portfolios became

substantially more liquid in the last two decades of the 20th century, with average L doubling

between 1980 and 2000. Most of this increase took place in the late 1990s. Second, since

2000, average L has been relatively stable around 0.05.
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To understand these patterns, Panel B of Figure 1 plots the time series of the two

components of L: stock liquidity and diversification. Stock liquidity rose sharply in the

late 1990s, single-handedly explaining the contemporaneous increase in L observed in Panel

A. The post-2000 patterns are more interesting. Stock liquidity declined steadily in the

21st century, falling from 17.8 in 2000 to 7.4 in 2014. Judging by this large decline in the

liquidity of fund holdings, one might expect fund portfolios to have become less liquid in

the 21st century, but that is not the case, as shown in Panel A. The reason is that fund

portfolios have become much more diversified: diversification almost tripled between 2000

and 2014. The two opposing effects—the decrease in stock liquidity and the increase in

diversification—roughly cancel out, resulting in a flat pattern in L since 2000.

The sharp increase in diversification after 2000 is remarkable. To shed more light on this

increase, Panel C of Figure 1 plots the components of diversification: balance and coverage.

Both components rise steadily, especially after 2000.8 Between 2000 and 2014, balance rose

from 0.31 to 0.43. Coverage rose even faster: it doubled. The portfolios of active mutual

funds have thus become more index-like: they hold an increasingly large fraction of all stocks

in the market, and their weights increasingly resemble market weights.

Finally, we dissect the sharp increase in coverage, which is equal to N/NM , by plotting

the time series of the cross-sectional averages of N and NM . Panel D of Figure 1 shows that

funds hold an increasingly large number of stocks. The average N rises essentially linearly

from 54 in 1980 to 126 in 2014. In addition, the number of stocks in the market plummets

from about 8,600 in the late 1990s to fewer than 5,000 in 2014. The observed increase in

coverage is thus driven by a combination of a rising N and falling NM .

Koijen and Yogo (2016) show that the price impact of mutual funds’ trades declines

between 1980 and 2014. Our Figure 1 suggests that this decline is driven by the rising diver-

sification of mutual fund portfolios. Both coverage and balance of fund portfolios increase

substantially over that period, making the portfolios more liquid.

2.4.2. Cross Section

Figure 2 plots the cross-sectional distribution of L and its components at the end of our

sample, in 2014Q4. The left-hand set of panels uses the market portfolio as a benchmark (as

in Figure 1); the right-hand set uses the appropriate sector benchmark. We consider nine

8The upward trends in both components of diversification, as well as the resulting upward trend in
portfolio liquidity, are statistically significant, as we show in the Internet Appendix.
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sectors corresponding to the traditional 3×3 style box used by Morningstar.9 To calculate

L with respect to a fund’s sector, we divide the fund’s market-based L by the fraction of

the total market capitalization accounted for by that sector. We calculate those sector-

specific fractions from the holdings of the Vanguard index fund tracking the sector-specific

benchmark.10 To calculate a fund’s sector-based stock liquidity, we multiply the fund’s

market-based stock liquidity by the ratio of the average market cap of all stocks in the

market to the average market cap of all stocks held by the sector-specific Vanguard index

fund. To calculate sector-based diversification and coverage, we multiply their market-based

values by the ratio of the number of stocks in the market to the number of stocks held by

the corresponding Vanguard index fund. Balance is unaffected by benchmark choice.

Figure 2 shows that active mutual funds hold relatively illiquid portfolios. Market-based

L, plotted in the top left panel, is mostly below 0.15, far below its potential maximum of 1.

Sector-based L, plotted in the top right panel, is larger than market-based L, by construction.

But even sector-based L is far below 1, mostly below 0.5.

Are the low portfolio liquidities caused by funds’ preference for illiquid stocks? The

answer is no. For the vast majority of funds, stock liquidity, plotted in the second row of

Figure 2, exceeds 1. In fact, market-based stock liquidity often exceeds 10, suggesting that

the average stock held by the fund is more than ten times bigger than the average stock

in the market. Sector-based stock liquidity also exceeds 1 for most funds, though it rarely

exceeds 4. In short, mutual funds tend to hold more-liquid stocks than their benchmarks.

This evidence is consistent with that of Falkenstein (1996), Gompers and Metrick (2001),

and others. The high stock liquidity makes fund portfolios more liquid, not less. Instead,

the story behind funds’ low portfolio liquidity is diversification. Market-based diversification

is mostly below 0.02, and sector-based diversification is largely below 0.4. To gain more

insight, we examine the components of diversification. While balance spreads across most

of the range between 0 and 1, coverage tends to be lower. Even sector-based coverage takes

values mostly below 0.5. This result is not surprising, since the average fund holds only 126

stocks (recall Panel D of Figure 1). We thus conclude that the relatively low liquidity of

active mutual funds is largely due to their low diversification, and that the low diversification

is driven mostly by the low coverage of the funds’ portfolios.

9Morningstar assigns funds to style categories based on the funds’ reported portfolio holdings, and it
updates these assignments over time. Since the assignments are made by Morningstar rather than the funds
themselves, there is no room for benchmark manipulation of the kind documented by Sensoy (2009). The
benchmark assigned by Morningstar can differ from that reported in the fund’s prospectus.

10These sector-specific fractions are 0.403, 0.748, and 0.362 for large-cap value, blend, and growth funds
(Vanguard tickers VIVAX, VLACX, VIGRX), 0.069, 0.134, and 0.070 for mid-cap value, blend, and growth
funds (Vanguard tickers VMVIX, VIMSX, VMGIX), and 0.067, 0.123, 0.061 for small-cap value, blend, and
growth funds (Vanguard tickers VISVX, NAESX, VISGX).
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2.4.3. Correlations

How much of the variance in portfolio liquidity is contributed by each of its components?

To answer this question, Table 1 reports the correlations between market-based L and stock

liquidity, diversification, coverage, and balance. We compute these correlations in four ways:

across all panel observations (Panel A), across funds (Panel B), across funds within the same

sector (Panel C), and over time within funds (Panel D). In all four panels, L is positively

correlated with both stock liquidity and diversification, which is not surprising. But the

correlation with stock liquidity is higher in Panels A and B, whereas the correlation with

diversification is higher in Panels C and D. This difference is driven by dispersion in stock

liquidity across sectors (e.g., large-cap stocks are more liquid than small-cap stocks). There-

fore, when we do not control for sector differences, the primary driver of L is stock liquidity

(Panels A and B), but when we do, the primary driver is diversification (Panels C and D).

The two components of L, stock liquidity and diversification, are negatively correlated in

all four panels. Funds holding less liquid stocks tend to be more diversified, in terms of both

coverage and balance. Stock liquidity and diversification seem to act as substitutes: funds

tend to make up for the low liquidity of their holdings by diversifying more.

Portfolio diversification is highly correlated with both of its components, coverage and

balance. The correlations are of similar magnitudes, indicating that coverage and balance

are roughly equally important in explaining diversification. Coverage and balance are mildly

positively correlated, but their correlation turns negative after controlling for other fund

characteristics, as we show later in Table 2.

In untabulated results, we find that L has a 79% correlation with the active share mea-

sure of Cremers and Petajisto (2009). This positive correlation makes sense because both

measures capture deviations of portfolio weights from benchmark weights. Cremers and

Petajisto interpret active share as measuring the extent to which a fund engages in active

management. In contrast, L is derived from a simple trading cost function.

3. Portfolio Liquidity and Other Fund Characteristics

In this section, we relate portfolio liquidity to three other key fund characteristics: fund size,

expense ratio, and turnover. We first derive such relations theoretically, from optimizing

behavior of fund managers and investors, and then verify them empirically.
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3.1. Portfolio Liquidity in Equilibrium

Consider an active fund whose proportional trading cost is given in equation (7). The fund’s

expected benchmark-adjusted return from active trading, before costs and fees, is

a = µT L− 1

2 , (10)

where µ is a fund-specific positive constant reflecting the fund’s ability to generate profits.

The profit function (10) is intuitive: higher before-cost returns are earned by funds with

greater skill (higher µ), larger turnover (higher T ), and less liquid portfolios (higher L− 1

2 ).

Profits plausibly decrease in portfolio liquidity for several reasons. Recall that less liquid

portfolios contain smaller stocks and are less diversified, both theoretically (equation (1)) and

empirically (Table 1). Mispricing is likely to be more prevalent among smaller stocks because

arbitrage for such stocks is deterred by higher transaction costs and volatility (e.g., Shleifer

and Vishny, 1997, Pontiff, 2006, and Stambaugh, Yu, and Yuan, 2015). Moreover, more

concentrated portfolios tend to perform better.11 Both components of diversification likely

relate to gross profits, before trading costs. By holding fewer stocks (i.e., lower coverage),

a fund can focus on its best trading ideas, leading to higher expected gross profits. By

deviating more from market-cap weights (i.e., lower balance), a fund can place larger bets

on its better ideas, again boosting performance. For all these reasons, it makes sense to

expect funds with lower L to earn higher gross profits. The functional form through which L

enters the profit function (10) is somewhat arbitrary; we choose the square root of portfolio

illiquidity so that the fund’s optimization problem has an interior solution.

Combining the profit function (10) with the cost function (7), the fund’s net alpha is

α = a − E(C/A) − f

= µTL− 1

2 − T 2L−1c (A/M) − f , (11)

where f denotes the fund’s expense ratio (or “fee,” for short). Competition among funds

requires the fund to choose L and T that maximize the fund’s α. Since α in equation (11)

depends on the product TL− 1

2 and its square, the fund chooses that product while being

indifferent between the various ways of achieving it. That is, if the fund chooses a less liquid

portfolio, it also chooses to trade less, and vice versa. The α-maximizing value of TL− 1

2 is

TL− 1

2 =
µM

2cA
. (12)

11For empirical evidence, see, for example, Kacperczyk, Sialm, and Zheng (2005), Ivkovich, Sialm, and
Weisbenner (2008), and Choi et al. (2017). For examples of theories in which portfolio concentration is a
fund’s optimal choice in the presence of information constraints, see Merton (1987), van Nieuwerburgh and
Veldkamp (2010), and Kacperczyk, van Nieuwerburgh, and Veldkamp (2016).
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Following Berk and Green (2004), we assume that competing investors allocate the amount

of assets A to the fund such that

α = 0 . (13)

Combining equations (11), (12), and (13) implies the fund’s equilibrium size is given by

A

M
=

µ2

4cf
. (14)

Note from equation (14) that the fund can set the fee rate f arbitrarily, in that fee revenue,

fA, is invariant to f . If the fund charges a higher f , investors allocate less to the fund,

leaving fee revenue unchanged. Fee revenue is determined by the fund’s skill, µ.

Combining equations (12) and (14), we obtain

TL− 1

2 =
2f

µ
. (15)

The fund’s choice of f therefore determines not only the fund’s size but also the level at

which the fund trades off its turnover against the illiquidity of its portfolio.12

Substituting for µ from equation (15) into equation (12) and taking logs, we obtain

log(L) = log(A/M) − log(f) + 2 log(T ) + constant . (16)

The “constant” term is the log of c, the constant that appears in the trading cost function.

Equation (16) shows how the four fund characteristics—portfolio liquidity L, fund size A/M ,

expense ratio f , and turnover T—are jointly determined in equilibrium. Funds with more-

liquid portfolios should be larger and cheaper, and they should trade more. To see the

intuition, imagine changing one variable on the right-hand side of equation (16) while holding

the other two constant. Holding f and T constant, when fund size increases, diseconomies

of scale lead the fund to hold a more liquid portfolio. Holding f and A/M constant, fee

revenue, and thus skill, are also constant. For a given level of skill, if a fund trades more, it

chooses a more liquid portfolio to reduce transaction costs. Holding A/M and T constant, if

a fund has a higher f , it has higher fee revenue and hence higher skill. A more skilled fund

can more effectively offset the higher trading costs associated with a less liquid portfolio.

For example, it can afford to concentrate its portfolio on its best ideas or to trade in less

liquid stocks, which are more susceptible to mispricing.

12The relations we derive bear some algebraic resemblance to equations that appear in Berk and Green
(2004). The contexts are different, however. In Berk and Green, the equations arise when a fund allocates
between an active strategy and a zero-alpha passive strategy. In contrast, our setting has funds choosing
portfolio liquidity and turnover among alternative positive-alpha strategies. Moreover, the quadratic cost
function delivering decreasing returns to scale in Berk and Green’s example is exogenously specified, whereas
decreasing returns to scale in our setting are micro-founded in the trading cost function.

15



3.2. Evidence

To test the predictions from equation (16), we interpret the equation as a regression of

log(L) on the other fund characteristics, and we estimate the regression using our mutual

fund dataset. The unit of observation is the fund/quarter. We include sector-quarter fixed

effects in the regression, which offers three important benefits. First, the fixed effects isolate

variation across funds, which is appropriate because our model applies period by period.

Second, by including sector-quarter fixed effects, we effectively use L defined with respect to

a sector-specific benchmark rather than the market. As noted earlier, sector-based L is equal

to market-based L divided by the fraction of the total stock market capitalization accounted

for by the sector. Since that fraction is sector-specific within a given quarter, sector-based

log(L) is equal to market-based log(L) minus a sector-quarter-specific constant that is soaked

up by our fixed effects. Third, our model assumes c is constant, and this assumption is more

likely to hold across funds within a given sector and quarter. The sector-quarter fixed effects

absorb variation in log(c), the constant in equation (16), both across sectors and over time.

Our specification therefore allows liquidity conditions to vary over time and across sectors.

Results using only quarter fixed effects, equivalent to using market-based L, are very similar

(see the Internet Appendix).

Column 1 of Table 2 provides strong support for the model’s predictions in equation

(16). The slope coefficients on all three regressors have their predicted signs. Moreover, all

three slopes are highly significant, both statistically and economically. The slope on fund

size (t = 13.76) shows that larger funds tend to have more-liquid portfolios. A one-standard-

deviation increase in the logarithm of fund size is associated with a sizeable 0.21 increase in

log(L), which corresponds, for example, to an increase in L from 0.20 to 0.25 (cf. top right

panel of Figure 2). The slope on expense ratio (t = −11.26) shows that cheaper funds tend

to have more-liquid portfolios. The economic significance of expense ratio is comparable

to that of fund size: a one-standard-deviation increase in log(f) is associated with a 0.22

decrease in log(L). Finally, the slope on turnover (t = 4.93) shows that funds that trade

more tend to have more-liquid portfolios. A one-standard-deviation increase in log(T ) is

associated with a 0.09 increase in log(L), which corresponds to an increase in L from 0.20 to

0.22. We conclude that funds with less liquid portfolios trade less and are smaller and more

expensive, fully in line with our theory.

Having tested the central predictions of equation (16), we turn to the additional predic-

tions following from equations (1) and (2). Equation (1) implies that

log(L) = log(Stock Liquidity) + log(Diversification) . (17)
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Combined with equation (16), this equation implies

log(Diversification) = log(A/M)− log(f)+2 log(T )− log(Stock Liquidity)+constant . (18)

This equation makes strong predictions about the determinants of portfolio diversification.

In equilibrium, funds with more diversified portfolios should be larger and cheaper, they

should trade more, and their stock holdings should be less liquid, on average.

Column 2 of Table 2 provides strong support for all of these predictions. Fund size,

expense ratio, and turnover help explain diversification with their predicted signs, and the

slopes have magnitudes similar to those in column 1. The new regressor, stock liquidity,

also enters with the right sign and is highly significant, both statistically (t = −21.61) and

economically. A one-standard-deviation increase in log(Stock Liquidity) is associated with

a 0.95 decrease in log(Diversification), for example, a decrease in diversification from 0.26

to 0.10 (cf. middle right panel of Figure 2). Stock liquidity and diversification are thus

substitutes, as noted earlier. This evidence fits our model, which predicts the L a fund

should choose, but not how to achieve that L by combining its components.

Next, we drill deeper by decomposing diversification following equation (2):

log(Diversification) = log(Coverage) + log(Balance) . (19)

Combined with equation (18), this equation implies

log(Coverage) = log(A/M) − log(f) + 2 log(T ) − log(Stock Liq.) − log(Balance) + constant

and

log(Balance) = log(A/M) − log(f) + 2 log(T )− log(Stock Liq.) − log(Coverage) + constant.

These equations make predictions about the determinants of portfolio coverage and balance.

Columns 3 and 4 of Table 2 support those predictions. In both regressions, all the

variables enter with their predicted signs. Most of the variables are highly significant; only

turnover in column 4 is marginally significant. Notably, the slopes on balance in column 3 and

coverage in column 4 are both negative. Therefore, controlling for other fund characteristics,

coverage and balance are substitutes: funds that are less diversified in terms of coverage

tend to be better diversified in terms of balance, and vice versa.

Finally, Column 5 of Table 2 tests the prediction analogous to that in equation (18),

except that diversification and stock liquidity switch sides: the former appears on the right-

hand side and the latter on the left-hand side of the regression. The evidence again supports
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the model, though a bit less strongly than the first four columns. Three of the four slopes

have the right sign and are all significant (the t-statistic on stock liquidity is −24.49!). The

slope on turnover is negative but not significantly different from 0.

In a robustness exercise, we split the sample into two subsamples, 1979 through 2004 and

2005 through 2014, which contain roughly the same number of fund-quarter observations.

The counterparts of Table 2 for both subsamples look very similar to the original, leading

to the same conclusions. We show both tables in the Internet Appendix.

4. Correlations Among Fund Characteristics

Our model also helps us understand simple correlations among the four key fund character-

istics: fund size, expense ratio, turnover, and portfolio liquidity. In this section we explore

these additional relations, which require assumptions beyond those we made earlier.

4.1. Larger Funds Are Cheaper

The sharpest additional prediction is that larger funds should have lower expense ratios. This

prediction follows from equation (14): fund size and expense ratio are perfectly negatively

correlated across funds if the skill parameter µ is constant. Since a fund’s net alpha is 0

in equilibrium, the fund’s fee revenue (A × f) equals the fund’s profits, which depend on

skill. Therefore, f goes down if A goes up, holding µ constant. If µ varies across funds,

the correlation between A and f is no longer perfect, but it remains negative as long as

µ is not too highly correlated with f across funds. Specifically, let βµ,f denote the slope

from the cross-sectional regression of log(µ) on log(f). Our model implies a negative cross-

sectional correlation between fund size and expense ratio as long as βµ,f < 1/2. It makes

sense for βµ,f to be positive, in that more skilled funds should be able to charge higher fees.

Nonetheless, it seems plausible that βµ,f < 1/2 because in practice, expense ratios have a

variety of institutional determinants beyond skill (marketing, distribution, etc.).

Empirical evidence strongly supports this prediction. Table 3 reports correlations be-

tween fund characteristics, again measured in logs. In our mutual fund dataset, the cross-

sectional within-sector correlation between fund size and expense ratio is −31.5% (t =

−15.30). Larger funds clearly charge lower expense ratios. This evidence is consistent with

our model. Other studies have already reported a negative correlation between fund size

and expense ratio (e.g., Ferris and Chance, 1987). But we appear to be the first to provide
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a theoretical justification for this strong stylized fact.13

The correlation between fund size and expense ratio is also strongly negative in the time

series for the typical fund, −25.1% (t = −17.61). We mainly view our model’s predictions as

being cross-sectional, applying within a single period. In principle, one could also view our

model as describing a given fund solving a series of single-period problems. However, applying

the model to a fund’s time series requires the trading-cost parameter c to be constant over

time, in tension with ample evidence that liquidity conditions fluctuate.

4.2. Funds That Trade Less Are Larger and Cheaper

The next set of predictions involves turnover (T ) and portfolio liquidity (L). Recall from

Section 3.1 that the fund chooses TL− 1

2 to maximize α. Our model predicts a negative

correlation between TL− 1

2 and A (equation (12)) and a positive correlation between TL− 1

2

and f (equation (15)). Both correlations should be perfect if skill (µ) is constant. The

intuition is that larger funds, facing diseconomies of scale, optimally reduce their trading

costs by either trading less or increasing their portfolio liquidity. Low-fee funds also trade

less and hold more-liquid portfolios, because such funds are larger, holding µ constant. If µ

varies, both correlations should retain their signs as long as µ is not too highly correlated

with f or A. Specifically, let βµ,A denote the slope from the regression of log(µ) on log(A).

The model implies a negative correlation between TL− 1

2 and A as long as βµ,A < 1 and a

positive correlation between TL− 1

2 and f as long as βµ,f < 1.

Empirical evidence strongly supports both predictions. Table 3 shows that the cross-

sectional within-sector correlation of TL− 1

2 with fund size is strongly negative, −23.1%

(t = −13.27), while the correlation with expense ratio is strongly positive, 25.5% (t = 13.58).

The correlations are similar when computed from the time series: −26.8% (t = −17.60) for

fund size and 13.6% (t = 9.20) for expense ratio.

While the product TL− 1

2 is interesting from the theoretical perspective, it also makes

sense to look at T and L individually. Our predictions for TL− 1

2 imply that, controlling for

L, T should be negatively related to fund size and positively related to expense ratio. This is

indeed true in the data, and the relations are so strong that they hold even without controlling

for L. In Table 3, T is negatively correlated with fund size, both in the cross section and

in the time series: the correlations are −10.5% (t = −6.01) and −14.7% (t = −12.17),

respectively. In addition, T is positively correlated with expense ratio: the correlation is

13Although not noted by Berk and Green (2004), a negative correlation between A and f could also be
derived from their model, which also has skill determining fee revenue.
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13.0% (t = 6.35) in the cross section and 10.5% (t = 7.57) in the time series. In short, funds

that trade less are larger and cheaper, as predicted by our model.

4.3. Funds with More-Liquid Portfolios Are Larger and Cheaper

Our predictions for TL− 1

2 also imply that, controlling for T , L should be positively related

to fund size and negatively related to expense ratio. Again, both relations hold strongly in

the data, even in simple correlations, as shown in Table 3. The correlations between L and

fund size are 28.5% (t = 17.90) and 30.8% (t = 18.23) in the cross section and time series,

respectively. The correlations between L and expense ratio are −29.1% (t = −13.39) and

−11.8% (t = −6.87). In short, funds with more-liquid portfolios are larger and cheaper, as

predicted by our model. This evidence is also consistent with our multiple-regression results

reported in Column 1 of Table 2.

The cross-sectional correlations that involve L are extremely robust. The correlations in

Panel A of Table 3 are computed from panel regressions with quarter-sector fixed effects,

which isolate cross-sectional correlations within sectors.14 Those correlations are therefore

weighted averages of cross-sectional correlations, where the averaging is across all quarters

in our sample. It turns out that the cross-sectional relations involving L hold not only on

average, but also in every single quarter in our sample. This stunning fact is plotted in

Figure 3. Both correlations involving L retain the same sign in every quarter between 1980

and 2014. In fact, in each quarter, their magnitudes exceed 20% in absolute value.

Two other cross-sectional correlations discussed earlier are similarly strong, which is why

we plot their time series in Figure 3. The correlation between fund size and expense ratio,

analyzed in Section 4.1, is negative in every single quarter, varying between −0.74 and −0.23

across quarters. The correlation between turnover and expense ratio, analyzed in Section

4.2, is positive in every quarter, varying between 0.10 and 0.36. It is rare to see a model’s

theoretical predictions hold so strongly in the data.

While Figure 3 plots cross-sectional correlations, the time-series correlations reported in

Table 3 are of similar magnitudes. The time-series correlation between L and fund size,

30.8%, is particularly strong. It shows that when a fund gets larger, its portfolio becomes

more liquid. This fact is easily interpreted in the context of our theory. Consider a fund that

14We also compute plain cross-sectional correlations (i.e., including quarter fixed effects instead of sector-
quarter fixed effects). The results are very similar to those in Panel A of Table 3 so we report them only in the
Internet Appendix. In that Appendix, we also show the results from another robustness exercise, in which
we recompute Table 3 for two subperiods containing roughly the same number of fund-month observations.
The results in both subsamples look very similar to the full-sample ones.
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receives a large inflow. Cognizant of decreasing returns to scale, the fund’s manager makes

the fund’s portfolio more liquid. And vice versa—after a large outflow, a fund can afford to

make its portfolio less liquid.

To illustrate these effects, we pick the example of Fidelity Magellan, the largest mutual

fund at the turn of the millenium. Figure 4 plots the time series of Magellan’s AUM and its

portfolio liquidity. The similarity between the two series is striking. Between 1980 and 2000,

Magellan’s assets grew rapidly, in large part due to the fund’s stellar performance under

Peter Lynch in 1977 through 1990. Over the same period, and especially after 1993, the

liquidity of Magellan’s portfolio also grew rapidly. From 1993 to 2001, Magellan’s L grew

from 0.1 to 0.4, a remarkable increase equal to nearly five standard deviations of the sample

distribution of L. After 2000, though, Magellan’s assets shrank steadily, and by 2014, they

were down by almost 90%. Over the same period, Magellan’s L was down also, back to

about 0.1. A natural interpretation is that Magellan’s large size around 2000 forced the

fund’s managers to increase the liquidity of Magellan’s portfolio to shelter the fund from the

pernicious effects of decreasing returns to scale.

5. Predicting Fund Returns

So far, we have analyzed portfolio liquidity while assuming investors allocate capital perfectly

to funds. In this section, we consider the possibility of capital misallocation, whereby fund

sizes differ from their equilibrium values. We relate excess fund size to portfolio liquidity and

other fund characteristics. This theoretical relation allows us to estimate excess fund size

as the residual from the regression implied by equation (16). We then show that our model

implies a negative relation between excess fund size and future fund performance. Finally,

we verify such a relation in the data.

5.1. Excess Fund Size

Building on Section 3.1, let
{

Ā, f̄ , L̄, T̄
}

denote the equilibrium values of a given fund’s

characteristics. Also let {A, f, L, T} denote the actual values of the same characteristics.

Suppose that investors misallocate capital to the fund, so that

A = Ā (1 + δ) . (20)

We refer to δ as excess fund size. Funds with δ > 0 are too big, whereas those with δ < 0

are too small relative to their equilibrium size.
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How does the fund respond to this misallocation? We assume that changing the previ-

ously announced fee is not an option, so that f = f̄ . This assumption is motivated by the

fact that fund fees are highly persistent over time. Instead, the fund responds by adjusting

either its turnover or its portfolio liquidity, or both. Specifically, the fund still chooses the

α-maximizing value of TL− 1

2 according to equation (12), so that the fund’s actual TL− 1

2 is

equal to T̄ L̄− 1

2 divided by (1 + δ). That is, funds that are too big (δ > 0) choose either to

trade less or to hold more-liquid portfolios, or both. Funds that are too small (δ < 0) do

the opposite. Intuitively, if a fund receives more capital than its skill level can support, it

optimally reduces trading costs, by either trading less or holding a more liquid portfolio.

Aided by the approximation δ ≈ log(1 + δ), we show in Appendix A that

log(L) ≈ log(A/M) − log(f) + 2 log(T ) + log(c) + δ . (21)

This equation is identical to equation (16) except for the extra term δ. Assuming that δ

is drawn from a random distribution with mean 0, we can view δ as the residual from the

regression of log(L) on the logs of the other three fund characteristics (A/M , f , and T ).

This is how we estimate excess fund size in our subsequent empirical analysis.

One complication in running regression (21) is that the regression residual, δ, is correlated

with one of the regressors, fund size. This correlation is apparent from equation (20). As

a result, OLS estimation of regression (21) is inconsistent. To get around this problem, we

estimate the regression by using an instrumental variables (IV) approach.

Our instrument for fund size is the size of the mutual fund family to which the fund

belongs. To calculate a given fund’s family size, we first add up the AUM across all funds

in the fund’s family, excluding the fund itself to avoid any mechanical correlation between

family size and fund size. We then augment each family size observation by $15 million, our

minimum threshold for fund AUM, and finally divide by M . The addition of $15 million

ensures a positive value for family size for single-fund families. We need family size to be

positive because we use its logarithm to instrument for log(A/M). The correlation between

the logs of family size and fund size is positive and significant, suggesting that the relevance

restriction is satisfied. The exclusion restriction is likely to be satisfied as well because it

is not clear why family size should be correlated with misallocation to the fund (δ). The

F -statistic for the first-stage regression is large, 583, indicating that our IV specification

does not suffer from the weak instrument problem.

In our first application of the IV approach, we use it to reestimate the regressions from

Table 2. The results, reported in Table 4, are very similar to the OLS results from Table

2. All of the slope estimates in Table 4 have the same signs as their counterparts in Table
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2. Moreover, all the slopes that are statistically significant in Table 2 are also significant in

Table 4. The results from Table 2 are thus robust to a different estimation approach.

Next, we analyze the persistence of excess fund size, δ. We compute δ as the residual from

regression (21) estimated by the IV approach. Full-sample estimates from this regression are

reported in column 1 of Table 4, though we reestimate this regression every month. For each

month t, we run the panel IV regression by using data from 1979 through month t− 12. We

denote this regression’s residual for fund j in month t−12 by δj,t−12. We use a 12-month lag

of δ to ensure that this variable is observable at the end of month t. One of the regressors

in regression (21), turnover, is computed over the fund’s current fiscal year, so we lag δ by

12 months to accommodate turnover’s annual reporting. Finally, we use a ten-year burn-in

period for estimating the IV regression. Since holdings data are very scarce in 1979, we run

the initial IV estimation over the ten-year period 1980 through 1989. Given the 12-month

lag of δj,t−12, the first month t for which we report results is January 1991. All empirical

analysis in this section therefore covers the period January 1991 through December 2014.

Figure 5 examines the persistence of the δ estimates. At the end of each month t, we sort

funds into five quintile portfolios within sectors based on funds’ values of δj,t−12. For each

horizon τ between 1 and 48 months, and for each quintile, we compute the average value of

δj,t+τ − δj,t across all funds j in the quintile and all months t, weighting each fund/month

observation equally. We plot these average changes in δ against horizon τ for quintiles 1, 3,

and 5. We refer to quintile 1 as low-δ funds and to quintile 5 as high-δ funds. Since the δ’s

average to 0, by construction, low-δ (high-δ) funds have negative (positive) values of δj,t−12.

Figure 5 shows that fund δ’s trend toward 0 in a highly persistent fashion. For low-δ

funds, the value of δ rises, essentially linearly, at all horizons out to at least four years. For

high-δ funds, the value of δ falls at a similar rate at the same horizons. This evidence suggests

that fund sizes trend toward their equilibrium values, but this convergence is relatively slow.

Capital misallocation gradually gets corrected, but it persists for years.

Our simple model makes no predictions as to where capital misallocation comes from or

how long it persists. The model does, however, make predictions about how this misallocation

affects fund performance.
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5.2. Predicting Fund Performance

Given our assumptions about misallocation from Section 5.1, equation (11) turns into

α = −

(

δ

1 + δ

)

f . (22)

Due to decreasing returns to scale, funds that are too big (δ > 0) have α < 0; funds that are

too small (δ < 0) have α > 0. Moreover, α depends on the magnitudes of δ and f . When

δ is small, δ
1+δ

≈ δ, so that α ≈ −δf . Even when δ is large, equation (22) implies that

α decreases in δ, especially when f is high. In short, our model implies that high excess

fund size predicts low benchmark-adjusted fund returns, and that this relation is stronger

for higher-fee funds.

We examine this prediction empirically in two ways, first using regressions and then us-

ing portfolio sorts. We run panel regressions of benchmark-adjusted fund returns in month

t+ τ on funds’ δj,t−12, including sector-month fixed effects to isolate cross-sectional variation

within sectors. That is, we compare future returns across funds within the same sector.

To compute benchmark-adjusted fund returns, we use three different benchmarks: Morn-

ingstar’s designated benchmark, the aggregate market portfolio, and the Carhart (1997)

four-factor model. The sample period is 1991 through 2014, as explained earlier.

The regression results, reported in Table 5, show that δ is indeed able to predict benchmark-

adjusted fund returns. All estimated slope coefficients are negative, indicating that higher-δ

funds have lower future returns. This predictive relation is statistically significant at all

forecasting horizons up to four years. The relation is also economically significant. A one-

standard-deviation increase in δj,t−12 is associated with a 2.9 to 3.2 basis points decline in

fund j’s benchmark-adjusted return in month t + 1, depending on the benchmark. These

monthly returns translate into a nontrivial 35 to 38 basis points per year. While the predic-

tive power of δ tends to decline with the forecasting horizon, the decline is modest. Even

at the four-year horizon, a one-standard-deviation increase in δj,t−12 is associated with a

return decline of 13 to 27 basis points per year. In short, excess fund size negatively predicts

benchmark-adjusted fund returns, consistent with the model.15

Next, we analyze the predictive power of δ in portfolio sorts. At the end of each month

t, we sort funds within sectors into five portfolios based on their values of δj,t−12. We

then compute the returns of each of the five portfolios in month t + 1 by equal-weighting

15In additional tests, we run the same predictive panel regressions with a different regressor: instead of
δj,t−12, we use the product δj,t−12fj,t−12, where fj,t−12 is fund j’s expense ratio in month t−12. The results
are very similar to those in Table 5, so we report them only in the Internet Appendix.
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the Morningstar-benchmark-adjusted returns of all funds on the portfolio. We repeat this

procedure each month, generating monthly time series of benchmark-adjusted returns on the

five portfolios between January 1991 and December 2014.

Table 6 shows that average benchmark-adjusted returns decrease monotonically across

the five portfolios, from −0.028% per month for the lowest-δ quintile to −0.082% per month

for the highest-δ quintile. The high-minus-low difference of −0.053% per month, or −0.64%

per year, is substantial but not statistically significant (t = −1.32). Why is the statistical

significance in Table 6 weaker than in Table 5? The predictive regressions in Table 5 are

estimated in sample, whereas the portfolio sorts in Table 6 are out of sample, with portfolios

formed each month based on publicly available information. Out-of-sample predictability is

often weaker than in-sample predictability (e.g., Goyal and Welch, 2003).

Nonetheless, even the out-of-sample results in Table 6 become statistically significant

when we focus on funds with high expense ratios, following the model’s guidance. Recall

from equation (22) that the negative relation between α and δ should be stronger for funds

with higher f . To examine the role of f , we split funds into two groups. In each month t, we

classify funds as either high-f or low-f depending on their expense ratio’s position relative

to the median across all funds in the given sector in month t − 1.

Table 6 shows that the negative relation between α and δ is much stronger for high-f

funds. Among high-f funds, high-δ funds underperform low-δ funds by 0.109% per month,

or 1.31% per year. This difference is statistically significant (t = −2.47) and twice as large

as its counterpart computed across all funds. Among low-f funds, the high-minus-low-δ

difference is also negative, but it is small and insignificant. The high-minus-low-f difference

between the two high-minus-low-δ differences is large and statistically significant (t = −2.59).

Across all ten portfolios in the double sort, the lowest return is earned by the high-f -high-δ

portfolio, and the highest return by the high-f -low-δ portfolio. To summarize, funds with

higher excess size underperform those with lower excess size, especially among expensive

funds. These results provide strong support for our model.

6. Conclusions

We make three sets of contributions. First, we introduce the concept of portfolio liquid-

ity, explaining that it depends on a portfolio’s diversification as well as the liquidity of its

holdings. We derive a simple measure of portfolio liquidity, along with a new measure of

diversification. By computing these measures for active U.S. equity mutual funds, we find
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that fund portfolios have become more liquid over time, mostly as a result of becoming more

diversified. We also find that the components of portfolio liquidity are substitutes: funds

holding less liquid stocks tend to diversify more.

Second, we model and document strong relations linking the most salient mutual fund

characteristics—fund size, expense ratio, turnover, and portfolio liquidity. We find that

funds with less liquid portfolios tend to be smaller, more expensive, and trade less. All of

these findings are predicted by our equilibrium model, in which the four fund characteristics

are jointly determined. The model predicts that larger funds should be cheaper, and that

funds that trade less should be larger and cheaper. These predictions also hold in the data.

Third, we use portfolio liquidity to identify and analyze capital misallocation to mutual

funds. We find that the misallocation gets corrected over time but persists for years. Excess

fund size predicts performance: funds that are too big underperform those that are too small.

This relation is stronger among more expensive funds, as predicted by the model.

Our empirical analysis focuses on U.S. equity mutual funds. Future research can apply

our concepts and measures to portfolios held by other types of institutions, such as hedge

funds, private equity funds, fixed income mutual funds, and pension funds. More research

into relations among fund characteristics also seems warranted. Finally, it could be useful to

analyze what determines misallocation of capital to funds, both theoretically and empirically.
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Figure 1. Time Series of Average Portfolio Liquidity and Its Components. This

figure plots the quarterly time series of the cross-sectional means of portfolio liquidity, stock

liquidity, diversification, coverage, balance, and the number of stocks held by each fund. Liq-

uidity, diversification, and its components are computed with respect to the market bench-

mark. In Panel D we also plot the number of stocks in the market portfolio.
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Figure 2. Cross Section of Portfolio Liquidity and Its Components. This figure

plots histograms of portfolio liquidity, stock liquidity, diversification, coverage, and balance

across all funds at the end of our sample (2014Q4).
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Figure 3. Cross-Sectional Correlations Over Time. This figure plots monthly time

series of the cross-sectional correlation between the two variables noted in the legend. All

variables are measured in logs. For each correlation, we drop months with fewer than 30

observations. To convert portfolio liquidity from a quarterly to a monthly variable, we take

portfolio liquidity from the current month or, if missing, from the previous two months.

Portfolio liquidity is computed with respect to the market benchmark.
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Figure 5. Does Excess Fund Size Adjust Over Time? At the end of each month t,

we sort funds into quintiles within sectors based on δj,t−12, which is the estimated residual

for fund j and month t− 12 from a rolling monthly panel IV regression that uses data from

1979 through month t− 12. The IV specification corresponds to column (1) in Table 4. For

each horizon τ between 1 and 48 months, and for each quintile, we compute the average of

δj,t+τ−δj,t across months t and funds j in the quintile, weighting each fund/month observation

equally. This figure plots these averages against horizon τ for quintiles 1, 3, and 5. We use

a ten-year burn-in period for estimating the IV regressions.
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Table 1

Correlations Between Portfolio Liquidity and Its Components

Panel A reports raw correlations, which are computed from panel data without any de-

meaning. Panel B reports cross-sectional correlations computed by first de-meaning each

variable using the mean across all observations from the same quarter, then computing the

full-sample correlation between the two de-meaned variables. Panels C and D are the same

as Panel B except that they replace quarter with quarter×sector (Panel C) or with fund

(Panel D). All variables are measured in logs.

Portfolio Stock Diversi-
Liquidity Liquidity fication Coverage Balance

Panel A: Raw Correlations

Portfolio Liquidity 1
Stock Liquidity 0.712 1
Diversification 0.300 -0.456 1
Coverage 0.288 -0.339 0.826 1
Balance 0.177 -0.386 0.748 0.244 1

Panel B: Cross-Sectional Correlations

Portfolio Liquidity 1
Stock Liquidity 0.744 1
Diversification 0.282 -0.432 1
Coverage 0.270 -0.307 0.805 1
Balance 0.157 -0.362 0.731 0.183 1

Panel C: Cross-Sectional Correlations Within Sectors

Portfolio Liquidity 1
Stock Liquidity 0.228 1
Diversification 0.798 -0.406 1
Coverage 0.650 -0.302 0.797 1
Balance 0.544 -0.311 0.703 0.132 1

Panel D: Time-Series Correlations

Portfolio Liquidity 1
Stock Liquidity 0.400 1
Diversification 0.724 -0.342 1
Coverage 0.524 -0.240 0.718 1
Balance 0.547 -0.266 0.761 0.096 1
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Table 2

Explaining Portfolio Liquidity and Its Components

This table presents results from five OLS panel regressions with dependent variables noted

in the column headers. All regressors are measured contemporaneously with the dependent

variable. All variables are measured in logs. The unit of observation is the fund/quarter. All

regressions include sector×quarter fixed effects (FEs) and cluster by fund. The R2 values in

the penultimate row include the FEs’ contribution. The last row contains the R2 values from

the regression of the dependent variable on the FEs alone. t-statistics are in parentheses.

(1) (2) (3) (4) (5)
Portfolio Stock
Liquidity Diversification Coverage Balance Liquidity

Fund Size 0.124 0.134 0.0940 0.0452 0.0122
(13.76) (15.00) (12.08) (7.54) (2.35)

Expense Ratio -0.608 -0.622 -0.408 -0.238 -0.132
(-11.26) (-11.00) (-9.33) (-6.95) (-5.26)

Turnover 0.101 0.122 0.102 0.0247 -0.0146
(4.93) (5.96) (6.37) (1.92) (-1.32)

Stock Liquidity -0.621 -0.337 -0.308
(-21.61) (-14.21) (-14.90)

Balance -0.0447
(-2.08)

Coverage -0.0343
(-2.09)

Diversification -0.264
(-24.49)

Observations 76928 76928 76928 76928 76928
R2 0.652 0.465 0.336 0.286 0.882
R2 (FEs only) 0.598 0.240 0.163 0.172 0.857
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Table 3

Correlations Among Fund Characteristics

This table reports correlations among the given fund characteristics, all measured in logs.
Panel A reports correlations across funds within sector-quarters. Starting with our full panel
dataset, we first de-mean each variable using the mean across all observations in the same
sector and quarter, then we compute the full-sample correlation between the two de-meaned
variables. Panel B reports time-series correlations within funds, which we compute analo-
gously except that we de-mean each variable using each fund’s time-series mean. t-statistics
are computed clustering by fund. The variable TL− 1

2 is equal to log(Turnover/[Portfolio

Liquidity
1

2 ]).

Fund Expense Portfolio

Size Ratio Liquidity Turnover TL− 1

2

Panel A: Cross-Sectional Correlations Within Sectors

Fund Size 1

Expense Ratio -0.315 1
(-15.30)

Portfolio Liquidity 0.285 -0.291 1
(17.90) (-13.39)

Turnover -0.105 0.130 0.039 1
(-6.01) (6.35) (1.92)

TL− 1

2 -0.231 0.255 -0.440 0.880 1
(-13.27) (13.58) (-24.35) (93.41)

Panel B: Time-Series Correlations

Fund Size 1

Expense Ratio -0.251 1
(-17.61)

Portfolio Liquidity 0.308 -0.118 1
(18.23) (-6.87)

Turnover -0.147 0.105 -0.109 1
(-12.17) (7.57) (-6.85)

TL− 1

2 -0.268 0.136 -0.540 0.895 1
(-17.60) (9.20) (-40.14) (127.68)
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Table 4

Table 2 Reestimated by Using Instrumental Variables

This table is analogous to Table 2, except that we estimate the models by IV instead of
OLS. We instrument for the natural logarithm of fund size by using the natural logarithm
of a variable equal to family size plus $15 million.

(1) (2) (3) (4) (5)
Portfolio Stock
Liquidity Diversification Coverage Balance Liquidity

Fund Size 0.338 0.368 0.270 0.130 0.0423
(13.53) (14.88) (14.00) (7.42) (2.77)

Expense Ratio -0.289 -0.278 -0.166 -0.137 -0.0985
(-4.52) (-4.17) (-3.24) (-3.66) (-3.50)

Turnover 0.130 0.156 0.129 0.0410 -0.00878
(5.89) (7.00) (7.33) (3.00) (-0.75)

Stock Liquidity -0.575 -0.321 -0.307
(-19.39) (-13.10) (-15.07)

Balance -0.103
(-4.57)

Coverage -0.0802
(-4.16)

Diversification -0.277
(-23.34)

Observations 76828 76828 76828 76828 76828
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Table 5

Predicting Fund Returns with Excess Fund Size

This table contains results from panel regressions of benchmark-adjusted fund returns in
month t+τ on funds’ excess size in month t−12 and sector×month fixed effects. The values
of τ are shown in the table’s top row. The regressor, δj,t−12, is the estimated residual for
fund j in month t− 12 from a rolling monthly IV panel regression that uses data from 1979
to month t − 12. The IV specification corresponds to column (1) in Table 4. We allow a
ten-year burn-in period for the IV regressions. All returns are in percent per month. The
dependent variable is the fund’s monthly return minus Morningstar’s designated benchmark
return (Panel A), the fund’s return minus the market return (Panel B), and the fund’s
excess return with respect to the Carhart (1997) four-factor model (Panel C). In Panel C,
we estimate each fund’s factor loadings from fund-by-fund time-series regressions, and if a
fund has fewer than 24 monthly observations, we use the average factor loadings for funds
in the same Morningstar category. We report t-statistics clustered by sector×month.

Forecasting Horizon (τ , in months)
1 3 6 12 24 36 48

Panel A: Morningstar Benchmark

Excess Size -0.0360 -0.0349 -0.0282 -0.0283 -0.0236 -0.0177 -0.0118
(-4.00) (-3.95) (-3.31) (-3.51) (-2.97) (-2.38) (-1.57)

Observations 199,311 195,765 190,612 180,763 161,449 143,412 127,440

Panel B: Market Benchmark

Excess Size -0.0344 -0.0342 -0.0269 -0.0282 -0.0256 -0.0210 -0.0189
(-3.86) (-3.89) (-3.16) (-3.48) (-3.18) (-2.78) (-2.45)

Observations 200,889 197,310 192,119 182,160 162,834 144,756 128,723

Panel C: Carhart Four-Factor Benchmark

Excess Size -0.0322 -0.0318 -0.0287 -0.0293 -0.0274 -0.0270 -0.0213
(-4.50) (-4.41) (-4.09) (-4.29) (-4.07) (-4.21) (-3.28)

Observations 200,889 197,310 192,119 182,160 162,834 144,756 128,723
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Table 6

Predicting Fund Returns Out of Sample: Portfolio Sorts

In the “All Funds” row, this table reports average benchmark-adjusted returns, in percent
per month, on portfolios formed based on funds’ excess size. At the end of each month t we
sort funds within sectors into five equal-weighted portfolios based on their values of δj,t−12,
which is the estimated residual for fund j in month t − 12 from a rolling monthly IV panel
regression that uses data from 1979 to month t − 12. The IV specification corresponds to
column (1) in Table 4. We allow a ten-year burn-in period for the IV regressions. We record
the portfolios’ returns in month t+1 and report their averages in this table. We drop months
with fewer than five funds in any portfolio. The portfolios’ benchmark-adjusted returns are
computed by averaging funds’ net returns in excess of Morningstar’s designated benchmark
return. The table also reports analogous results for high- and low-expense-ratio subsets
of funds, which are created based on funds’ lagged expense ratios relative to the month’s
median. t-statistics are in parentheses.

Excess Fund Size

Low 2 3 4 High High−Low

All Funds -0.028 -0.055 -0.062 -0.071 -0.082 -0.053
(-0.78) (-1.91) (-2.26) (-2.73) (-3.02) (-1.32)

High Expense Ratio -0.006 -0.078 -0.094 -0.081 -0.115 -0.109
(-0.14) (-2.29) (-3.26) (-2.77) (-4.18) (-2.47)

Low Expense Ratio -0.040 -0.038 -0.037 -0.052 -0.046 -0.006
(-0.98) (-1.23) (-1.16) (-1.72) (-1.48) (-0.13)

High−Low 0.034 -0.040 -0.057 -0.029 -0.069 -0.103
(0.91) (-1.26) (-2.08) (-1.08) (-3.23) (-2.59)
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Appendix A. Proofs

Proof that the most liquid portfolio is the benchmark portfolio:

Starting from equation (3), we solve the following constrained minimization problem:

min
{wi}

NM∑

i=1

w2
i

mi
subject to

NM∑

i=1

wi = 1 . (A1)

The problem is convex, so the first-order conditions describe the minimum. Denoting the
optimal portfolio weights by w̃i and the Lagrange multiplier by ζ, the first-order conditions
are 2w̃i

mi
− ζ = 0, so that w̃i = ζmi

2
. Substituting into the constraint yields

∑NM

i=1

ζmi

2
= 1,

which implies ζ
2

∑NM

i=1 mi = 1, which in turn implies ζ = 2, which then gives w̃i = mi.

A different proof, which is instructive in its own right, relies on a perturbation argument.
Consider a portfolio with liquidity L. We perturb this portfolio by buying a bit of stock i
and selling a bit of stock j, so the new portfolio weights are w∗

i = wi + u and w∗
j = wj − u,

where u > 0 and all other weights remain the same. The portfolio’s illiquidity changes to

(

L−1
)∗

=
∑

n/∈{i,j}

w2
n

mn
+

(wi + u)2

mi
+

(wj − u)2

mj

= L−1 + 2u

(

wi

mi
−

wj

mj

)

+ u2

(

1

mi
+

1

mj

)

. (A2)

If the original portfolio is the benchmark portfolio, for which wi/mi = wj/mj = 1, it follows
immediately that any perturbation increases portfolio illiquidity: (L−1)

∗
> L−1.

Proof of equation (8):

First, define m =
∑N

i=1 mi and note that

m =
N∑

i=1

mi =
N∑

i=1

Mi

M
=

∑N
i=1 Mi

∑NM

i=1 Mi

=
N

NM
×

1

N

N∑

i=1

Mi

1

NM

∑NM

j=1 Mj

. (A3)

Second, rearrange the inverse of portfolio liquidity from equation (3) as follows:

L−1 =
N∑

i=1

w2
i

mi
=

1

m

N∑

i=1

w2
i

m∗
i

=
1

m

N∑

i=1

m∗
i

(

wi

m∗
i

)2

=
1

m
E∗







(

wi

m∗
i

)2






=
1

m





(

E∗

{

wi

m∗
i

})2

+ Var∗
(

wi

m∗
i

)

 =
1

m

[

1 + Var∗
(

wi

m∗
i

)]

, (A4)

where E∗ is the expectation with respect to the m∗ measure. Combining equations (A3) and
(A4) yields equation (8).
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Proofs of statements from Section 4:

First, we prove that the cross-sectional correlation between fund size and expense ratio
is negative as long as βµ,f < 1/2. Take logs in equation (14), so that

log(A) = − log(f) + 2 log(µ) + constant , (A5)

and note that

Cov(log(A), log(f)) = Cov(− log(f) + 2 log(µ), log(f))

= 2Cov(log(µ), log(f)) − Var(log(f)) . (A6)

For this covariance to be negative, we need Cov(log(µ), log(f))/Var(log(f) < 1

2
, or βµ,f < 1

2
.

Second, we prove that the correlation between TL− 1

2 and f is positive as long as βµ,f < 1.
Take logs in equation (15), so that

log(TL− 1

2 ) = log(f) − log(µ) + log(2) , (A7)

and note that

Cov(log(TL− 1

2 ), log(f)) = Cov(log(f) − log(µ), log(f))

= Var(log(f)) − Cov(log(µ), log(f)) . (A8)

For this covariance to be positive, we need Cov(log(µ), log(f))/Var(log(f) < 1, or βµ,f < 1.

Finally, we prove that the correlation between TL− 1

2 and A is negative as long as βµ,A < 1.
Take logs in equation (12), so that

log(TL− 1

2 ) = log(µ) − log(A) + constant , (A9)

and note that

Cov(log(TL− 1

2 ), log(A)) = Cov(log(µ) − log(A), log(A))

= Cov(log(µ), log(A))− Var(log(A)) . (A10)

For this covariance to be negative, we need Cov(log(µ), log(A))/Var(log(A) < 1, or βµ,A < 1.

Proofs of statements from Section 5:

The fund chooses TL− 1

2 according to equation (12), so that TL− 1

2 = µM/(2cA). Since

the equilibrium values satisfy T̄ L̄− 1

2 = µM/(2cĀ), equation (20) implies that TL− 1

2 =

T̄ L̄− 1

2 / (1 + δ). From equation (15), we have µ = 2f/(T̄ L̄− 1

2 ). Substituting this for µ in equa-
tion (12) yields T 2L−1 = fM/(Ac (1 + δ)). Taking logs and approximating δ ≈ log (1 + δ),
we obtain equation (21). We use the equation T 2L−1 = fM/(Ac (1 + δ)) again when substi-

tuting for T 2L−1 in equation (11). We also substitute µ = 2f/(T̄ L̄− 1

2 ) = 2f/(TL− 1

2 (1 + δ))
in equation (11). That equation then quickly turns into equation (22).

39



Appendix B. Alternative Trading Cost Functions

We now make more general assumptions about the trading cost function. In equation
(5), the cost per dollar traded increases linearly with the ratio of the dollar amount traded
to market capitalization. We now replace the linearity in equation (5) by nonlinearity:

Ci = c̃
(

Di

Mi

)γ

, (A11)

where γ > 0. The trading cost function then becomes

E
(

C

A

)

=
(

A

M

)γ

T 1+γc

(
N∑

i=1

w1+γ
i

mγ
i

)

︸ ︷︷ ︸

L−1

, (A12)

where c = c̃E
{

(1 + εi)
1+γ

}

, so that portfolio liquidity is given by

L =

(
N∑

i=1

w1+γ
i

mγ
i

)−1

. (A13)

For the baseline case of γ = 1, which we use throughout the paper, equations (A11), (A12),
and (A13) simplify to equations (5), (7), and (3), respectively. Under this alternative defi-
nition of L, we still have L ∈ (0, 1], and the maximum value of L = 1 is still achieved by the
benchmark portfolio.

This alternative measure of portfolio liquidity can also be decomposed into stock liquidity
and diversification, as in equation (8), but the formulas are a bit more complicated:

L =

(

1

N

N∑

i=1

Li

)γ

︸ ︷︷ ︸

Stock Liquidity

×
(

N

NM

)γ


E∗







(

wi

m∗
i

)1+γ










−1

︸ ︷︷ ︸

Diversification

. (A14)

Our equilibrium analysis from Section 3.1 generalizes easily. Equation (10) becomes

a = µT L− 1

1+γ . Combining this profit function with the cost function in equation (A12), we

obtain α. The fund chooses TL− 1

1+γ to maximize α. Setting α = 0, we obtain

A

M
=

µ
1+γ

γ

cγf

γ

(1 + γ)
1+γ

γ

. (A15)

which is the counterpart of equation (14). Continuing as in the baseline case, we obtain

log(L) = γ log(A/M) − log(f) + (1 + γ) log(T ) + log(γ) +
(

1 − γ − γ2
)

log(c) . (A16)

Comparing this equation to equation (16), we see that all of the empirical predictions that we
test in Table 2 continue to hold in this alternative framework. In the regression of portfolio
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liquidity on fund size, expense ratio, and turnover, the slopes on all three regressors retain
the same signs as in the baseline case of γ = 1. When we reestimate our results from Table
2 for the alternative measure of L with values of γ ranging from 0.1 to 0.9, we find similar
results, as we show in the Internet Appendix.

Another possible modification involves introducing stock-specific values of ci and turnover.
Define stock i’s turnover as ti = Vi/Mi, where Vi is total dollar volume for stock i. Given
this stock-level heterogeneity, it makes sense to modify equations (5) and (6) into

Ci = c̃i
Di

Vi
(A17)

Di = ATtiwi(1 + εi) . (A18)

The idea behind these modifications is that cost per dollar traded is increasing in the fraction
of the stock’s volume traded, and that each fund trades more of stocks that have higher
turnover. The cost function from equation (7) then becomes

E
(

C

A

)

=
(

A

M

)

T 2

(
N∑

i=1

citiw
2
i

mi

)

︸ ︷︷ ︸

L−1

, (A19)

where ci = c̃i (1 + σ2
ε ). In this case, our portfolio liquidity measure generalizes as indicated

in equation (A19). While modeling stock-level turnover ti is beyond the scope of this paper,
it seems reasonable to assume that ti is lower for stocks with higher transaction costs ci.
In fact, at the fund level, this is a result in our model: recall that funds with less liquid
portfolios optimally choose to trade less. If citi is constant across stocks in the benchmark,
then the liquidity measure from equation (A19) simplifies to the one from equation (3).

Finally, we combine the above extensions and assume that

Ci = c̃i

(
Di

Vi

)γ

(A20)

along with equation (A18). The cost function then becomes

E
(

C

A

)

=
(

A

M

)γ

T 1+γ

(
N∑

i=1

citiw
1+γ
i

mγ
i

)

︸ ︷︷ ︸

L−1

, (A21)

where ci = c̃iE
{

(1 + εi)
1+γ

}

. Our portfolio liquidity measure then generalizes as indicated

in equation (A21). If citi is constant across stocks in the benchmark, then this liquidity
measure simplifies to the one in equation (A13).

Appendix C. Data

To construct our sample of actively managed U.S. domestic equity mutual funds, we begin
with the 1979–2011 dataset constructed by Pástor, Stambaugh, and Taylor (2015), which
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combines and cross-validates data from CRSP and Morningstar. A detailed description
of the dataset is in the online Data Appendix to that paper. We expand the dataset by
merging it with the Thomson Reuters dataset of fund holdings and adding data from 2012
through 2014. We restrict the sample to include fund-month observations whose historical
Morningstar category falls within the traditional 3×3 style box (small-cap, mid-cap, large-
cap interacted with growth, blend, and value). This restriction excludes non-equity funds,
international funds, and industry-specific funds. We also exclude funds identified by CRSP
or Morningstar as index funds, funds whose name contains the word “index,” and funds
classified by Morningstar as funds of funds. We exclude fund-month observations with
expense ratios below 0.1% per year since they are extremely unlikely to belong to actively
managed funds. Finally, we exclude fund-month observations with lagged fund size below
$15 million in 2011 dollars. We aggregate share classes belonging to the same fund.16

When computing portfolio weights w, we drop all fund holdings that are not included
in our definition of the market portfolio, which is guided by the holdings of Vanguard’s
Total Stock Market Index fund. A fund’s holding can fall outside the market if its CUSIP
cannot be linked to the CRSP database (1.0% of the Vanguard fund’s holdings), or if the
security is in CRSP but outside our definition of the market (e.g. ADRs, units, limited
partnerships, etc., which make up 0.1% of the Vanguard fund’s holdings). These holdings
mainly represent cash, bonds, and other non-equity securities. For the median (average)
fund/month observation in our sample, 2.3% (3.5%) of holding names and 1.9% (3.1%) of
holding dollars are outside the market.

As explained in Section 2, we measure fund size by the fund’s AUM divided by total stock
market capitalization. Our measure of a fund’s AUM is cross-verified between CRSP and
Morningstar, as described in Pástor, Stambaugh, and Taylor (2015). Family size is defined
in Section 5.1. Annual data on expense ratios and turnover are from CRSP. Turnover is
the minimum of the fund’s dollar buys and sells during the fiscal year, scaled by the fund’s
average total net assets. Following Pástor, Stambaugh, and Taylor (2017), we winsorize
turnover at the 1st and 99th percentiles. Monthly fund returns, net of expense ratio, are
from CRSP and Morningstar. Following Pástor, Stambaugh, and Taylor (2015), we require
that CRSP and Morningstar agree closely on a fund’s return; otherwise we set it to missing.

For any fund-level variable requiring holdings data, we set the variable to missing if there
is a large discrepancy in fund’s AUM between our CRSP/Morningstar database and the
Thomson Reuters holdings database. We compute the ratio of the fund’s AUM according
to CRSP/Morningstar to the fund’s AUM obtained by adding up all the fund’s holdings
from Thomson Reuters. If this ratio exceeds 2.0 or is less than 0.5, we set all holdings-based
measures to missing. This filter drops the holdings-based variables for 3.4% of fund/quarter
observations. We suspect that some of these large discrepancies are due to poor links between
Thomson Reuters and CRSP/Morningstar.

16Many mutual funds offer multiple share classes, which represent claims on the same underlying assets but
have different fee structures. Different share classes of the same fund have the same Morningstar FundID.
We aggregate all share classes of the same fund. Specifically, we compute a fund’s size by summing AUM
across the fund’s share classes, and we compute the fund’s expense ratio, returns, and other variables by
asset-weighting across share classes.
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Table A1

Summary Statistics

This table presents summary statistics of the fund-level variables used in the empirical anal-
ysis. Portfolio liquidity and its components (the first five variables) are defined in Section
2. These variables are measured quarterly as they require holdings data. The remaining
variables, which are measured monthly, are defined in this Appendix. Fund size and family
size are measured as fractions of the total stock market capitalization. Expense ratio and
turnover are in units of fraction per year. Adjusted return is the fund’s return in excess of
the return on the Morningstar-designated benchmark. Both returns are in units of fraction
per month.

N Mean Stdev. P1 P25 P50 P75 P99

Portfolio Liquidity 93,366 0.0461 0.0636 0.0006 0.0075 0.0227 0.0619 0.2949

Stock Liquidity 93,366 10.68 10.12 0.15 1.63 9.18 16.67 42.31

Diversification 93,366 0.0080 0.0190 0.0002 0.0020 0.0042 0.0084 0.0585

Coverage 93,366 0.0191 0.0332 0.0029 0.0077 0.0121 0.0194 0.1312

Balance 93,366 0.3711 0.1835 0.0389 0.2271 0.3584 0.5052 0.7838

Fund Size×104 351,243 0.955 3.472 0.011 0.052 0.170 0.594 14.319

Family Size×100 377,842 0.439 1.217 0.000 0.007 0.066 0.296 6.393

Expense Ratio 365,301 0.0123 0.0044 0.0034 0.0095 0.0117 0.0146 0.0250

Turnover 336,006 0.83 0.70 0.03 0.34 0.64 1.10 3.89

Return 394,203 0.0081 0.0525 -0.1494 -0.0190 0.0123 0.0386 0.1309

Adjusted Return 384,508 -0.0006 0.0219 -0.0602 -0.0100 -0.0009 0.0083 0.0628
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